最新六年級數(shù)學比例教案(匯總14篇)

字號:

    良好的教案設計應能激發(fā)學生的主動學習興趣,激發(fā)他們的思維。教案的編寫需要注意選用合適的教學方法和教學手段。參考教案范文可以幫助教師們更好地理解和掌握課程標準和教學內(nèi)容。
    六年級數(shù)學比例教案篇一
    1.求比值。
    8∶4=48∶12=16∶8=。
    24∶18=40∶16=15∶5=。
    準備題。
    (1)找出下列分數(shù)中相等的分數(shù),并說說你是根據(jù)什么找的?(略)。
    學生找出后,教師作引導性提問:它們?yōu)槭裁聪嗟??誰能完整地說出分數(shù)的基本性質?
    (2)在()內(nèi)填上適當?shù)臄?shù)。
    3÷4=()4=()40=()÷12=0.75。
    58=5:()。
    6:7=()7=()7。
    9:()=():16。
    教師:由上面這兩組題你想到了什么?
    小結:根據(jù)分數(shù)與除法的關系,除法與比的關系,比的前項相當于分數(shù)的分子,比的后項相當于分數(shù)的分母,比值相當于分數(shù)值。
    比也可以寫成分數(shù)的形式,如5:8可以寫成5/8。
    六年級數(shù)學比例教案篇二
    1、談話:老師準備去水果超市買一些蘋果,已知蘋果每千克的單價是6元,如果我準備買1千克,你能求出什么?(總價)。
    2、出示表格。
    已知蘋果每千克的單價是6元。
    根據(jù)學生的回答將表格填寫完整。
    提問:如果買()千克,總價()元……;
    觀察表格,你們發(fā)現(xiàn)了什么?(當學生回答:買的千克數(shù)越多,總價就越高)。
    在這里——“買的千克數(shù)”和“總價”就是兩種相關聯(lián)的量。
    六年級數(shù)學比例教案篇三
    1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
    教師把學生舉的例子板書出來。
    2、老師也準備了幾個比,想讓同學們求出他們的比值,并根據(jù)比值分類。
    2:34.5:2.710:6。
    80:44:610:1/2。
    提問:你是怎樣分類的?
    教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:兩個比相等4.5:2.7=10:612:16=3/5:4/580:4=10:1/2)像這樣的式子叫做比例。這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)。
    二、引導探究,學習新知。
    1、教學比例的意義。
    (1)教學例題。
    先出示教材上的四幅圖,請同學說說圖的內(nèi)容。找一找四幅圖中有什么共同的東西。再出示四面國旗長、寬的尺寸。
    師:選擇其中兩面國旗(例如操場和教室的國旗),請同學們分別寫出它們長與寬的比,并求出比值。
    提問:根據(jù)求出的比值,你發(fā)現(xiàn)了什么?(兩個比的比值相等)。
    教師邊總結邊板書:因為這兩個比的比值相等,所以我們也可以寫成一個等式。
    2.4∶1.6=60∶40像這樣由兩個相等的比組成的式子我們把它叫做比例。
    師:在圖上這四面國旗的尺寸中,還能找出哪些比來組成比例?
    比例也可以寫成分數(shù)形式:4.5/2.7=10/6請同學們很快地把黑板上我們寫出的比例,改寫成分數(shù)形式。
    (2)引導概括比例的意義。
    同學們,老師剛才寫出的這些式子叫做比例,那么誰能用一句話把比例的意義總結出來呢?(根據(jù)學生的回答板書比例的意義。)。
    (3)判斷。舉一個反例:那么2:3和6:4能組成比例嗎?為什么?
    “從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必須具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?(看兩個比的比值是否相等)如果不能一眼看出兩個比是不是相等的,怎么辦?”(根據(jù)比例的意義去判斷)。
    根據(jù)學生的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。如果不能一眼看出兩個比是不是相等,可以先分別把兩個比比值求出來以后再看。
    (4)比較“比”和“比例”兩個概念。
    引導學生從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
    (5)反饋訓練。
    用手勢判斷下面卡片上的兩個比能不能組成比例。
    6:3和12:635:7和45:9。
    20:5和16:80.8:0.4和4:2。
    2、教學比例的基本性質。
    (1)自學課本,了解比例各部分的名稱,理解各部分的名稱與各項在比例中的位置有關。
    (2)檢查自學情況:指名說出黑板上各比例的內(nèi)外項。
    (3)探究比例的基本性質。
    兩個外項的積是4.5×6=27。
    兩個內(nèi)項的積是2.7×10=27。
    (4)計算驗證,達成共識。
    師:“是不是所有的比例都有這樣的性質呢?”讓學生分組計算判斷前面的比例式,發(fā)現(xiàn)所有的比例式都有這個共同的規(guī)律。
    (5)引導小結比例的基本性質。
    師:通過計算,大家,誰能用一句話把這個規(guī)律概括出來?
    教師歸納并板書:在比例里,兩個外項的積等于兩個內(nèi)項的積。這叫做比例的基本性質。
    師:“如果把比例寫成分數(shù)形式,比例的基本性質又是怎樣的呢?”(指著4.5/2.7=10/6)“這個比例的外項是哪兩個數(shù)呢?內(nèi)項呢?”
    學生回答后,教師強調(diào):如果把比例寫成分數(shù)形式,比例的基本性質就是等號兩端分子和分母分別交叉相乘,積相等。
    (6)判斷。前面要判斷兩個比是不是成比例,我們是通過計算它們的比值來判斷的。學過比例的基本性質以后,也可以應用比例的基本性質來判斷兩個比能不能成比例。
    反饋訓練:應用比例的基本性質判斷3:4和6:8能不能組成比例。
    三、鞏固深化,拓展思維。
    (一)判斷。
    1.兩個比可以組成一個比例。()。
    2.比和比例都是表示兩個數(shù)的倍數(shù)關系。()。
    3.8:2和1:4能組成比例。()。
    (二)、用你喜歡的方式,判斷下面那組中的兩個比可以組成比例。把組成的比例寫出來。
    (1)6:9和9:12(2)14:2和7:1。
    (3)0.5:0.2和5:2(4)0.8:0.4和0.3:0.6。
    (三)填空。
    (1)一個比例的兩個外項互為倒數(shù),則兩個內(nèi)項的積是(),如果其中一個內(nèi)項是2/3,則另一個內(nèi)項是(),如果一個比例中,兩個外項分別是7和8,那么兩個內(nèi)項的和一定是()。
    (2)如果2:3=8:12,那么,()x()=()x()。
    (3)寫出比值是4的兩個比是()、(),組成比例是()。
    (4)如果5a=3b,那么,a:b=():()。
    (四)下面的四個數(shù)可以組成比例嗎?如果能,能組成幾個?把組成的比例寫出來。
    2、3、4和6。
    拓展題:猜猜括號里可以填幾?
    5:2=10:()2:7=():0.71.2:2.5=():25。
    四、全課小結,提高認識。
    五、布置作業(yè)。
    練習六2、3、5。
    六年級數(shù)學比例教案篇四
    本節(jié)課主要是應用比例尺的知識解決一些簡單的實際問題。遵循“解決實際問題的活動價值不只是獲得具體問題的解,更重要的是學生在解決問題的過程中獲得的發(fā)展”這一理念。本節(jié)課在教學設計上重點突出了以下幾個方面:
    1.面向全體,重視學生對基本解題方法的理解。
    在教學中,對于“解比例”,從審題、分析、列比例,到求出的解所表示的實際長度及所用單位,都通過相應的問題加以突出,使學生都能夠運用“列比例法”去解決各種相關的問題。
    2.拓展思維,重視學生對解題策略個性化和多樣化的體驗。
    在教學中,為學生提供獨立思考的機會,結合相關例題,巧妙提出問題,引發(fā)學生廣泛思考,使學生充分發(fā)揮自己的聰明才智,在找到自己個性化的解題策略的同時,也在交流、討論中感受并理解其他同學的不同解題方法。
    3.滲透思想,引導學生實現(xiàn)解題策略的優(yōu)化。
    在教學中,引導學生對不同的解題策略進行比較,使學生在理解不同解題策略的同時,選擇比較簡捷易懂的解法,從而實現(xiàn)解決問題策略的優(yōu)化。
    六年級數(shù)學比例教案篇五
    1.通過學習,初步了解比例尺的意義。
    2.認識數(shù)值比例尺和線段比例尺兩種不同表現(xiàn)形式,學會求出平面圖的比例尺。
    3.能運用所學的比例尺的知識解決生活中的問題,并在小組合作中培養(yǎng)合作意識和創(chuàng)新思維能力。
    4.情感、態(tài)度、價值觀:體會數(shù)學與日常生活的密切聯(lián)系。
    (1)理解比例尺的含義。
    (2)能根據(jù)圖上距離、實際距離、比例尺中的兩個量求第三個量。
    小黑板、課件、備一幅地圖。
    同學們,昨天老師請大家自己動手測量了我們教室的長和寬?,F(xiàn)在老師提議大家以小組為單位,當一名繪圖師,利用你們手里的材料,畫出我們教室的平面圖。再動手之前,先考慮這兩個問題:
    1.要把教室的平面圖畫在紙上,你有這么大的紙嗎?那怎么辦?
    2.隨便在紙上畫一個長方形,這一定是教室的平面圖嗎?小組合作并完成匯報,在實物展示臺上展示自己的作品。
    教師總結:同學們都很聰明,你們都把實際的長和寬縮小了,畫出了教室的平面圖,其實就是用到了今天我們要學習的知識――比例尺,也就是把實際距離按一定的倍數(shù)縮小。
    揭示課題:今天我們一起來學習比例尺的知識。
    1.學習比例尺的意義。
    (1)動手操作。
    請學生在小組內(nèi)算一算自己所畫的教室平面圖的長和寬各縮小了多少倍。
    學生們計算并匯報,集體訂正。
    一個教室長8米,寬7米,如果我們要畫這個教室的平面圖,就需要把實際距離同時縮小一定的倍數(shù)后,畫在平面圖上,縮小多少倍由你自己決定,你打算設計:
    1、用幾厘米表示8米和7米。
    2、你設計的方案是圖上距離比實際距離縮小了多少倍?
    3、算一算、每幅圖的圖上距離與實際距離的比。
    同學們剛才算出的各幅圖的圖上距離和實際距離的比就叫做這幅圖的比例尺。我們把教室實際的長和寬叫做實際距離,把畫在紙上的教室的長和寬叫做圖上距離。
    請學生重復說一遍什么叫做比例尺。
    板書:圖上距離:實際距離=比例尺。
    請每個人算一算自己所畫的教室的平面圖的比例尺是多少。
    (2)觀察地圖,自由交流。
    引導學生充分發(fā)表意見,教師輔助講解:
    1比較出比例尺的兩種不同表現(xiàn)形式――數(shù)值比例尺和線段比例尺2比例尺的大小不同,同樣的佛山市在中國地圖、廣東地圖和佛山地圖上的大小都不一樣,這就是采用了大小不同的比例尺。
    補充說明:為了計算方便,我們通常把比例尺改寫成前項或后項是1的比。
    (4)學習例1。
    板書:圖上距離:實際距離。
    =1cm:50km。
    =1cm:cm。
    =1:。
    請學生根據(jù)剛才的解答,說說求比例尺需要知道哪些條件,怎樣求比例尺,誰是前項,誰是后項。
    2.知識運用。
    (1)即時訓練。
    學生獨立完成教材第49頁的“做一做”,教師巡視指導,幫助個別有困難的學生。
    集體訂正后引導學生通過交流討論,明確根據(jù)圖上距離與實際距離求比例尺的方法:首先依據(jù)比例尺的意義寫出比的前項后項,寫出比,圖上距離與實際距離位置不要寫錯;接著把兩項化成相同的單位;最后化簡比,變成前項或后項是1的比。
    (2)拓展訓練。
    課件出示下列四個問題:
    1每年十月,莫斯科紅場將舉行盛大的閱兵儀式,以慶?!笆赂锩钡膭倮绻覀冏w機前去觀看,請你仔細觀察手中的世界地圖,算出首都北京到俄羅斯首都莫斯科的距離。
    2天津是2008北京奧運會足球賽區(qū)城市之一,如果你是設計師,請你設計出足球場的平面圖,并標出比例尺。(足球場的長是90~120米,寬是60~90米)。
    4這里有比例尺1:20、20:1和1:1,它們的意義相同嗎?請舉例說明。
    請學生在這四個問題中任選一個,給充足的時間獨立思考,也可以在四人小組內(nèi)選擇其中一個問題合作研究,小組長做好分工。完成任務后,集體匯報,教師根據(jù)學生完成的情況進行小結,并給予適當?shù)闹笇А?BR>    3.教學例2。
    多媒圖上距離15cm實際距離450km。
    回家找一找自己或爸爸媽媽今年的全身照片,算一算照片的比例尺。
    六年級數(shù)學比例教案篇六
    1.用已經(jīng)學過的知識試著將第67頁“試一試”中的比化成最簡整數(shù)比。
    學生化簡后交流反饋,說說方法。師生共同小結方法及注意點:應用比的基本性質把整數(shù)比、小數(shù)比、分數(shù)比化成最簡單的整數(shù)比時,第一步一般都化成整數(shù)比,接著再利用比的基本性質把比的前、后項同除以它們的最大公約數(shù),使比的前、后項成為互質數(shù)。
    2.出示練習題:化簡下面各比,并求出比值。
    比最簡單的整數(shù)比比值。
    9:54。
    34∶67。
    5.8∶2.9。
    200∶150∶26。
    討論:化簡比與求比值有什么區(qū)別?(求比值就是求“商”,得到的是一個數(shù),可以寫成分數(shù)、小數(shù),有時也能寫成整數(shù)。而化簡比則是為了得到一個最簡單的整數(shù)比,可以寫成真分數(shù)或假分數(shù)的形式,但是不能寫成帶分數(shù)、小數(shù)或整數(shù))。
    3.學生獨立完成練習十五第3題,完成后用投影儀集體訂正。
    4.拓展練習。
    (1)六(3)班男生人數(shù)是女生的1.2倍,男、女生人數(shù)的比是(),男生和全班人數(shù)的比是(),女生和全班人數(shù)的比是()。
    (2)一個長方形周長是30厘米,長與寬的比是7∶3,求長與寬各是多少厘米?
    六年級數(shù)學比例教案篇七
    學生發(fā)現(xiàn):時間變化,路程也隨著變化,路程和時間是兩種相關聯(lián)的量。(補充板書)。
    (二)探索兩個變量之間的關系。
    1、談話:請同學們進一步觀察表中的數(shù)據(jù),找一找這兩種量的變化有什么規(guī)律?
    啟發(fā)學生從“變化”中去尋找“不變”。
    學生可能會從不同的角度去尋找規(guī)律。
    2、教師可根據(jù)交流的實際情況,及時引導學生通過計算確認這一規(guī)律,并有意識地從后一種角度突出這一規(guī)律。
    如果學生發(fā)現(xiàn)不了上述規(guī)律,可引導學生寫出幾組相對應的路程與時間的比,并求出比值。
    路程。
    根據(jù)學生的回答,教師板書關系式:時間=速度(一定)。
    4、教師對兩種量之間的關系作具體說明:當路程和對應時間的比的比值總是一定,也就是速度一定時,我們就說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
    (板書:路程和時間成正比例)。
    反問:在什么條件下行駛的路程和時間呈正比例?
    六年級數(shù)學比例教案篇八
    2.使學生能正確判斷正、反比例.。
    教學重點。
    正、反比例的聯(lián)系和區(qū)別.。
    教學難點。
    能正確判斷正、反比例.。
    教學過程。
    一、復習準備。
    判斷下面每題中兩種量成正比例還是成反比例.。
    1.單價一定,數(shù)量和總價.。
    2.路程一定,速度和時間.。
    3.正方形的邊長和它的面積.。
    4.時間一定,工效和工作總量.。
    二、新授教學。
    (一)出示課題。
    六年級數(shù)學比例教案篇九
    教材復習第4~l0題。
    1、使學生加深認識正比例關系和反比例關系的意義,進一步掌握判斷兩種相關聯(lián)的量是否成正比例或反比例的方法,提高分析、判斷的能力。
    2、使學生進一步掌握正、反比例應用題的解題思路和解題方法,提高解答正、反比例應用題的能力。
    加深認識正比例關系和反比例關系的意義。
    提高解答正、反比例應用題的能力。
    一、揭示課題。
    在“比例”這一單元里,除了認識了比例的意義和性質外,還學習了成正、反比例量的有關知識。這節(jié)課,我們復習正、反比例。(板書課題)通過復習,一要加深對成正比例關系和成反比例關系量的認識,提高兩種相關聯(lián)量成正比例還是反比例關系的判斷能力;二要進一步認識正、反比例的應用題,加深理解正、反比例應用題的解題思路和方法,提高用比例知識解答應用題的能力。
    二、復習正、反比例的意義。
    1、做復習第4題。
    讓學生看第4題,思考各成什么比例。指名學生口答,說明理由。
    2、整理正、反比例的意義。
    3、做復習第5題。
    小黑板出示,指名學生口答,并說明理由。說明:根據(jù)實際問題里相關聯(lián)量所成的.正比例或反比例關系,可以用比例知識解答相應的應用題。
    三、復習正、反比例應用題。
    1、整理解題思路。
    (1)做復習第6題。
    讓學生讀題,思考各成什么比例的應用題。指名學生說明各是什么應用題,為什么。指名兩人板演,其余學生做在練習本上。集體訂正,讓學生說明根據(jù)什么列式的。
    (2)提問:解答正、反比例應用題要怎樣想?在解題方法上有什么不同的地方?
    2、綜合練習。
    (1)、做復習第8題。
    讓學生讀題。提問:“藥粉和水的比是1:500”你是怎樣想的?(引導學生看出藥粉和水的份數(shù)以及1:500表示比值一定等)這兩道題成什么比例,為什么?讓學生做在練習本上。指名學生口答等式,老師板書。再讓學生說說怎樣想的,根據(jù)什么列式的。追問:這道題還可以怎樣做?(讓學生思考按比的意義,應用分數(shù)知識或歸一方法,口答算式)。
    (2)、做復習第l0題。
    要求學生思考有哪些方法解答第一個問題、指名一人板演,其余學生做在練習本上。要求列出不同解法的式子。集體訂正,說說各是怎樣想的。
    四、課堂小結。
    這節(jié)課復習了哪些內(nèi)容?誰來說一說這節(jié)課你掌握了哪些知識或方法?
    五、課堂作業(yè)。
    復習第7.9題,第10題第二個問題。
    六年級數(shù)學比例教案篇十
    (二)教師提問。
    1.你為什么馬上能想到還剩多少呢?
    2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?
    教師板書:兩種相關聯(lián)的量。
    (三)教師談話。
    在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和。
    數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?
    二、新授教學。
    (一)成正比例的量。
    例1.一列火車行駛的時間和所行的路程如下表:
    時間(時):路程(千米)。
    1:90。
    2:180。
    3:270。
    4:360。
    5:450。
    6:540。
    7:630。
    8:720。
    1.寫出路程和時間的比并計算比值.。
    (1)2表示什么?180呢?比值呢?
    (2)這個比值表示什么意義?
    (3)360比5可以嗎?為什么?
    2.思考。
    (1)180千米對應的時間是多少?4小時對應的路程又是多少?
    (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
    教師板書:時間、路程、速度。
    (3)速度是怎樣得到的?
    教師板書:
    (4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
    (5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.。
    3.小結:有什么規(guī)律?
    六年級數(shù)學比例教案篇十一
    1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
    2、培養(yǎng)學生概括能力和分析判斷能力。
    3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
    成正比例的量的特征及其判斷方法。
    理解兩個變量之間的比例關系,發(fā)現(xiàn)思考兩種相關聯(lián)的'量的變化規(guī)律.
    啟發(fā)引導法。
    自主探究法。
    課件。
    一、定向導學(5分)。
    1、已知路程和時間,求速度。
    2、已知總價和數(shù)量,求單價。
    3、已知工作總量和工作時間,求工作效率。
    4、導入課題。
    今天我們來學習成正比例的量。
    5、出示學習目標。
    1、理解正比例的意義。
    2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。
    二、自主學習(8分)。
    自學內(nèi)容:書上45頁例1。
    自學時間:8分鐘。
    自學方法:讀書法、自學法。
    自學思考:
    1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
    2、正比例關系式是什么?
    (1)兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。
    y/x=k(一定)。
    (4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
    2、歸類提升。
    引導學生小結成正比例的量的意義和關系式。
    三、合作交流(5分)。
    第46頁正比例圖像。
    1、正比例圖像是什么樣子的?
    2、完成46頁做一做。
    3、各組的b1同學上臺講解。
    四、質疑探究(5分)。
    1、第49頁第1題。
    2、第49頁第2題。
    3、你還有什么問題?
    五、小結檢測(8分)。
    1、什么是正比例關系?如何判斷是不是正比例關系?
    2、檢測。
    1、49頁第3題。
    六、堂清作業(yè)(9分)。
    練習九頁第4、5題。
    六年級數(shù)學比例教案篇十二
    學生思考回答(挖掘學生生活經(jīng)驗)。
    同學們知道的真多,說明同學們平時認真觀察,是個有心人。
    二、引導探究,自主建構。
    活動一:探究比例的意義。
    1.你了解到哪些關于國旗大小的知識?
    學生交流,給學生充分的交流機會。
    (1)猜測。
    預設:生1、長和寬的比值相等;生2、寬和長的比值相等,
    (2)小組驗證。
    每個小組任選兩種規(guī)格國旗,驗證一下每種國旗長和寬之間存在的規(guī)律。
    (3)展示交流小組驗證結果,學生到黑板前板書得出結論。
    預設:每種國旗的長和寬的比都是3:2,他們的比值相等。
    每種國旗的寬和長的比是2:3,他們的比值相等。
    怎么判斷兩個比是不是成比例?
    試一試,判斷下面哪組中的兩個比可以組成比例。
    2:3和6:94:2和28:405:2和10:420:5和1:4。
    活動二:探究比例的基本性質。
    2.小組內(nèi)驗證猜測結果。
    3.展示驗證猜測情況。得出結論,
    預設:
    “在比例里,兩個外項相乘的積就等于兩個內(nèi)項相乘的得數(shù)”。
    “在比例里,把兩個外項乘起來,再把兩個內(nèi)項乘起來,它們的得數(shù)是一樣的”。
    教師歸納總結。
    同學們說得對,在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質。
    板書:比例的基本性質。
    誰能用分數(shù)形式表示以上比例?怎樣求兩個內(nèi)項和兩個外項的積呢?(分子和分母交叉相乘)。
    三、強化訓練、應用拓展。
    同學們學習了比例的意義與性質,那么能利用它們解決實際問題嗎?
    1.判斷下面哪組中的兩個比可以組成比例?
    (1)6:9和9:12。
    (2)1/2:1/5和5/8:1/4。
    (3)1.4:2和7:10。
    (4)0.5:0.2和10:4。
    2.判斷。
    (1)表示兩個比相等的式子叫做比例()。
    (2)0.6:1.6與3:4能組成比例()。
    (3)如果4a=5b,那么a:b=4:5()。
    3.填空。
    5:2=80:()。
    2:7=():5。
    1.2:2.5=():4。
    在一個比例里,兩個外項互為倒數(shù),其中一個內(nèi)項是6,另一個內(nèi)項是()。
    在一個比例里,兩個內(nèi)項的積是12,其中一個外項是2.4,另一個外項是()。
    4.寫出比值是5的兩個比,并組成比例。
    5.根據(jù)3a=5b把能組成的比例寫出來。
    四、自主反思、深入體驗。
    通過這節(jié)課的學習你有什么收獲?
    六年級數(shù)學比例教案篇十三
    1、借助正比例的意義理解反比例的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
    2、在小組合作學習過程中,掌握合作學習技能,體驗合作學習的快樂。
    一、創(chuàng)設情境,明確問題。
    同學們,昨天老師去幼兒園接小朋友,看見幼兒園的老師正在給小朋友們分餅干,想知道他們是怎么分的嗎?我們一起去看一看:
    仔細觀察,從這個表中,你知道了什么?你知道表中的哪兩種量成正比例嗎?(說明理由)。
    說一說成正比例的兩個量的變化規(guī)律。
    師:小明的媽媽要去銀行換一些零錢,請你幫忙算一算,各換多少張:
    二、探索新知,尋求規(guī)律。
    1、獨立思考:出示表格,讓學生自己觀察,提出問題并解決問題。
    2、小組合作,交流探討問題。
    要求:認真聽取別人的意見,詳細說明自己的觀點,如果有不懂的地方要虛心求助,最重要的是要控制好自己的言行,小組長要協(xié)調(diào)好本組的合作過程。
    3、匯報交流,發(fā)現(xiàn)規(guī)律。
    4、教師小結,明確概念,呈現(xiàn)課題。
    5、在理解概念的基礎上增加記憶。
    三、理解應用,鞏固新知。
    1、給車棚的地面鋪上水泥磚,每塊水泥磚的面積與所需數(shù)量如下:
    每塊水泥磚的面積與所需數(shù)量是否成反比例?為什么?
    2、下表中x和y兩個量成反比例,請把表格填寫完整。
    3、判斷下面每題中的兩種量是否成反比例,并說明理由。
    (1)、全班的人數(shù)一定,每組的人數(shù)和組數(shù)。
    (2)、圓柱的體積一定,圓柱的底面積和高。
    (3)、書的總頁數(shù)一定,已經(jīng)看的頁數(shù)和未看的頁數(shù)。
    (4)、圓柱的'側面積一定,它的底面周長和高。
    (5)、六(1)班學生的出席人數(shù)與缺席人數(shù)。
    4、下面各題中的兩種量是不是成比例?如果成比例,成什么比例?
    (1)、訂閱《小學生天地》的份數(shù)和總錢數(shù)。
    (2)、小新跳高的高度與他的身高。
    (3)、平行四邊形的面積一定,底和高。
    (4)、正方行的邊長與它的周長。
    (5)、三角形的面積一定,底和高。
    5、生活中還有哪些成反比例關系的量?
    四、課堂總結,拓展延伸。
    1、這節(jié)課學會了什么知識?反比例的意義是什么?
    2、這節(jié)課你與小組同學合作的怎么樣?以后應該怎么做?
    六年級數(shù)學比例教案篇十四
    3、感知生活中的數(shù)學知識。
    1、通過具體問題認識反比例的量。
    2、掌握成反比例的量的變化規(guī)律及其特征。
    認識反比例,能根據(jù)反比例的意義判斷兩個相關聯(lián)的量是不是成反比例。
    預習24---26頁內(nèi)容。
    1、什么是成反比例的量?你是怎么理解的?
    2、情境一中的兩個表中量變化關系相同嗎?
    3、三個情境中的兩個量哪些是成反比例的量?為什么?
    利用反義詞來導入今天研究的課題。今天研究兩種量成反比例關系的變化規(guī)律。
    情境(一)。
    認識加法表中和是12的直線及乘法表中積是12的曲線。
    引導學生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個加數(shù)隨另一個加數(shù)的變化而變化;乘法表中積是12,一個乘數(shù)隨另一個乘數(shù)的變化而變化。
    情境(二)。
    讓學生把汽車行駛的速度和時間的表填完整,當速度發(fā)生變化時,時間怎樣變化?每。
    兩個相對應的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨立觀察,思考。
    同桌交流,用自己的語言表達。
    寫出關系式:速度×時間=路程(一定)。
    觀察思考并用自己的語言描述變化關系乘積(路程)一定。
    情境(三)。
    寫出關系式:每杯果汁量×杯數(shù)=果汗總量(一定)。
    5、以上兩個情境中有什么共同點?
    引導小結:都有兩種相關聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這兩種量中相對應的`兩個數(shù)的乘積是一定的。這兩種量之間是反比例關系。
    活動四:想一想。
    1、判斷下面每題是否成反比例。
    (1)出油率一定,香油的質量與芝麻的質量。
    (2)三角形的面積一定,它的底與高。
    (3)一個數(shù)和它的倒數(shù)。
    (4)一捆100米電線,用去長度與剩下長度。
    (5)圓柱體的體積一定,底面積和高。
    (6)小林做10道數(shù)學題,已做的題和沒有做的題。
    (7)長方形的長一定,面積和寬。
    (8)平行四邊形面積一定,底和高。
    2、教材“練一練”p33第1題。
    3、教材“練一練”p33第2題。
    4、找一找生活中成反比例的例子,并與同伴交流。
    兩個相關聯(lián)的量,乘積一定,成反比例。
    關系式:x×y=k(一定)。
    本課時教學設計特點:一是情景設置和幾個表格的設計,都注重從現(xiàn)實題材出發(fā),讓學生感受到反比例在現(xiàn)實生活中的廣泛應用。二是通過讓學生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學生的數(shù)學思維。