平方差公式教學設(shè)計理念(模板14篇)

字號:

    總結(jié)是對過去的回顧,可以幫助我們認識到自己的成長與不足。一個完美的總結(jié),應(yīng)該包含具體的案例和實際的應(yīng)用。這里是一些總結(jié)范文,希望能激發(fā)大家寫作的靈感和思路。
    平方差公式教學設(shè)計理念篇一
    一、教學目標:
    1、使學生理解和掌握平方差公式,并會用公式進行計算;
    2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學的意識;
    3、在緊張而輕松地教學氛圍內(nèi),進一步激發(fā)學生的學習興趣熱情。
    二、重點、難點:
    重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導的理解及字母的廣泛含義。
    三、教學方法。
    以教師的精講、引導為主,輔以引導發(fā)現(xiàn)、合作交流。
    四、教學過程。
    (一)創(chuàng)設(shè)問題情境,引入新課。
    1、你會做嗎?
    (1)(x+1)(x—1)=_____=()。
    (3)(3x+2)(3x—2)=_____=()()。
    2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學生興趣。)。
    交流上面第1題的答案,引導學生進一步思考:
    (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)。
    我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學生用語言敘述公式,并讓學生熟記。)。
    (三)嘗試探究。
    (四)鞏固練習。
    (l)(x+a)(x—a)。
    (2)(m+n)(m—n)(3)(a+3b)(a—3b)。
    (4)(1—5y)(l+5y)(5)998×1002。
    (6)395×405。
    2、直接寫出答案:
    (l)(—a+b)(a+b)。
    (2)(a—b)(b+a)。
    (3)(—a—b)(—a+b)。
    (4)(a—b)(—a—b)(5)999×1001。
    (6)×(讓學生獨立完成,互評互改。)。
    (五)小結(jié)。
    2.運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
    (學生回答,教師總結(jié))。
    (六)作業(yè)。
    p106習題1—5題。
    七、板書設(shè)計:
    教學反思。
    通過精心備課,本節(jié)課在教學中是比較成功的。成功之處在于整個教學流程環(huán)環(huán)相扣,層層遞進,抓住了學生思維這條主線,遵循由淺入深,由特殊到一般的認知規(guī)律,引起學生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
    平方差公式教學設(shè)計理念篇二
    2.經(jīng)歷探索平方差公式的過程,認識“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認識規(guī)律和數(shù)學發(fā)現(xiàn)方法,平方差公式第一課時教學反思。
    重點:公式的理解與正確運用(考點:此公式很關(guān)鍵,一定要搞清楚特征,在以后的學習中還繼續(xù)應(yīng)用)。
    難點:公式的理解與正確運用。
    教法:自主探究和合作交流。
    (1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
    =x2-22=12-(2y)2=x2-(3y)2。
    學生分組討論,交流,小組長回答問題。
    師生共同總結(jié)歸納:
    即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
    (1)一組完全相同的項;
    (2)一組互為相反數(shù)的項。
    2.例題。
    (1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
    3.公式應(yīng)用。
    (1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
    兩個學生板演,其余學生在練習本上自己獨立完成。
    老師巡視,輔導學困生。
    1.計算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
    師生共同分析:此題特征,兩次利用平方差公式,教學反思《平方差公式第一課時教學反思》。
    學生在練習本上獨立完成,同桌互相檢查。
    2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
    學生分組討論交流,獨立完成運算。
    1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
    3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
    2、運用公式要注意的.問題:
    (2)公式中的a、b可以代表什么?
    一、檢測導入。
    二、例題展示。
    三、拓展延伸。
    四、達標堂測。
    五、歸納小結(jié)。
    即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
    六、布置作業(yè)。
    p21:習題1.91、2。
    平方差公式教學設(shè)計理念篇三
    2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力。
    教學重點和難點。
    難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
    教學過程設(shè)計。
    我們已經(jīng)學過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
    讓學生動腦、動筆進行探討,并發(fā)表自己的見解。教師根據(jù)學生的回答,引導學生進一步思考:
    (當乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
    繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
    在此基礎(chǔ)上,讓學生用語言敘述公式。
    例1計算(1+2x)(1-2x)。
    解:(1+2x)(1-2x)。
    =12-(2x)2。
    =1-4x2.
    教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么。
    例2計算(b2+2a3)(2a3-b2)。
    解:(b2+2a3)(2a3-b2)。
    =(2a3+b2)(2a3-b2)。
    =(2a3)2-(b2)2。
    =4a6-b4.
    教師引導學生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
    課堂練習。
    (l)(x+a)(x-a);(2)(m+n)(m-n);
    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
    例3計算(-4a-1)(-4a+1)。
    讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演。
    解法1:(-4a-1)(-4a+1)。
    =[-(4a+l)][-(4a-l)]。
    =(4a+1)(4a-l)。
    =(4a)2-l2。
    =16a2-1.
    解法2:(-4a-l)(-4a+l)。
    =(-4a)2-l。
    =16a2-1.
    根據(jù)學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
    課堂練習。
    1、口答下列各題:
    (l)(-a+b)(a+b);(2)(a-b)(b+a);
    (3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
    2、計算下列各題:
    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
    教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析解法。
    2、運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
    平方差公式教學設(shè)計理念篇四
    《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標。為此,我作了如下努力:
    1、把數(shù)學問題“蘊藏”在游戲中。
    導入新課,是課堂教學的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
    2、充分重視“自主、合作、探究”的教學方式的運用。
    把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應(yīng)用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學生歸納出平方差公式的運用技巧。
    3、自置懸念,享受成功。
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設(shè)計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
    4、切實落在實效上。
    本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
    5、值得注意的是:
    1、節(jié)奏的把握上。
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學生的主體地位上。
    這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。
    平方差公式教學設(shè)計理念篇五
    本節(jié)課是圍繞“引導學生有效預(yù)習”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學生思考,在學生的預(yù)習基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
    讓學生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認識,有助于讓學生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習的鞏固,讓學生把握教材,吃透教材,讓學生更加熟練、準確,起到強化、鞏固的作用,讓學生領(lǐng)會換元的思想,達到初步發(fā)展學生綜合應(yīng)用的能力。
    本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學生學會合情推理的能力,同時也培養(yǎng)了學生愛思考,善交流的良好學習慣。
    (一)知識與技能。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過程與方法。
    1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
    2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達能力。
    3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達化,培養(yǎng)學生的化歸思想。
    4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
    5.通過活動4,讓學生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
    (三)情感與態(tài)度。
    1.通過探究平方差公式,讓學生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
    平方差公式教學設(shè)計理念篇六
    學生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點內(nèi)容之一。
    平方差公式是第一個乘法公式,教學時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學生充分的觀察、分析、討論交流的時間,老師應(yīng)及時的給與必要的指導、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
    然后我有設(shè)計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學生的認知能力有一個過程,教學中應(yīng)由易到難逐步安排學習這方面的內(nèi)容。
    平方差公式教學設(shè)計理念篇七
    2、注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力。
    教學重點和難點。
    難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
    教學過程設(shè)計。
    我們已經(jīng)學過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
    讓學生動腦、動筆進行探討,并發(fā)表自己的見解。教師根據(jù)學生的回答,引導學生進一步思考:
    (當乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)。
    繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
    在此基礎(chǔ)上,讓學生用語言敘述公式。
    例1計算(1+2x)(1-2x)。
    解:(1+2x)(1-2x)。
    =12-(2x)2。
    =1-4x2.
    教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么。
    例2計算(b2+2a3)(2a3-b2)。
    解:(b2+2a3)(2a3-b2)。
    =(2a3+b2)(2a3-b2)。
    =(2a3)2-(b2)2。
    =4a6-b4.
    教師引導學生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
    課堂練習。
    (l)(x+a)(x-a);(2)(m+n)(m-n);
    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
    例3計算(-4a-1)(-4a+1)。
    讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的。兩個學生進行板演。
    解法1:(-4a-1)(-4a+1)。
    =[-(4a+l)][-(4a-l)]。
    =(4a+1)(4a-l)。
    =(4a)2-l2。
    =16a2-1.
    解法2:(-4a-l)(-4a+l)。
    =(-4a)2-l。
    =16a2-1.
    根據(jù)學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
    課堂練習。
    1、口答下列各題:
    (l)(-a+b)(a+b);(2)(a-b)(b+a);
    (3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
    2、計算下列各題:
    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
    教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析解法。
    2、運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
    2、計算:
    (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)。
    平方差公式教學設(shè)計理念篇八
    1、進一步提高分析,解決問題的能力。
    2、學會條件整理,明晰解題思路。
    3、理解設(shè)間接未知數(shù)的意義。
    1、學會用列表格或畫圖法分析題目,理順關(guān)系,使得各種數(shù)量關(guān)系一目了然,具有直觀易懂的優(yōu)點,避免了因數(shù)據(jù)多,關(guān)系復雜而混淆不清。
    2、當直接設(shè)未知數(shù)時難于列出方程或找到相關(guān)的等量關(guān)系,我們可采取用間接設(shè)未知數(shù)的辦法。
    問題設(shè)疑:從a到長青化工廠,鐵路走多少公里?公路走多少公里?
    從長青化工廠到b,鐵路走多少公里?公路走多少公里?
    鐵路每噸千米運價是多少?公路每噸千米運價是多少?
    兩次運輸總支出為多少元?
    分析:銷售款與產(chǎn)品數(shù)量有關(guān),原料費與原料數(shù)量有關(guān),設(shè)產(chǎn)品重噸,原料重噸,根據(jù)題中數(shù)量關(guān)系填定下表:
    產(chǎn)品噸。
    原料噸。
    合計。
    公路運費(元)。
    鐵路運費(元)。
    價值(元)。
    題目所求數(shù)值是,為此需先解出與。
    由上表,列方程組。
    解這個方程組,得。
    因此,這批產(chǎn)品的銷售款比原料費與運輸費的和多元。
    1七年級某班同學參加平整土地勞動,運土人數(shù)比挖土人數(shù)的一半多3人,若從挖土人員中抽出6人去運土,則兩者人數(shù)相等,原來有運土________人,挖土_______人。
    2、足球比賽的計分規(guī)則為勝一場得3分,平一場得1分,負一場得0分,一個隊打11場,負3場,共得16分,那么這個隊勝了______場。
    當堂檢測題。
    1、學校的籃球數(shù)比排球數(shù)的2倍少3個,足球數(shù)與排球數(shù)的比是2:3,三種球共41個,則籃球有_______個,排球有______個,足球有_______個。
    2、已知梯形的面積是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,則梯形的上、下底分別是____________。
    3、小兵最近購買了兩種三年期債券5000元,甲種年利率為5.8%,乙種年利率為6%,三年后共可得到利息888元,則他購甲種債券________元,乙種債券_______元。
    4、甲對乙風趣地說:“我像你這樣大歲數(shù)的那年,你才2歲;而你像我這樣大歲數(shù)的那年,我已經(jīng)38歲了?!眲t甲、乙兩人現(xiàn)在的歲數(shù)分別是_______。
    5、某商店為了處理積壓商品,實行虧本銷售,已知購進的甲、乙商品原價共為880元,甲種商品按原價打8折,乙種商品按原價打七五折,結(jié)果兩種商品共虧196元,則甲、乙商品的原價分別為()。
    a、400元,480元b、480元,400元。
    c、360元,300元d、300元,360元。
    平方差公式教學設(shè)計理念篇九
    我參與了學校組織的“同課異構(gòu)”活動,授課內(nèi)容是《乘法公式——平方差公式(一課時)》。
    上學期末我恰好在任縣二中參加了一次關(guān)于教材研究的會議,當時河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學一般有六個環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應(yīng)用;歸納提升。新課標也要求我們在教學中不只是傳授學生基本的知識技能,還要以培養(yǎng)學生的數(shù)學能力及合作探究的意識為目標。為此,我在設(shè)計本節(jié)課的教學環(huán)節(jié)時充分考慮學生的認知規(guī)律,并以培養(yǎng)學生的數(shù)學素質(zhì),了解運用數(shù)學思想方法,增強學生的合作探究意識為宗旨。
    我的教學流程是按照“引入——猜想——證明——辨析——應(yīng)用——歸納——檢測”的順序進行的,非常符合學生的認知規(guī)律。我覺得本節(jié)課比較好的方面有以下幾點:
    1.在利用圖形面積證明平方差公式時,我沒有采用教材上直接給出剪接方法再證明的過程,只給出了原圖讓學生們自己去探究不同的方法。事實證明,學生們不只拼出了書上的方法,還從對角線剪開拼出了梯形,平行四邊形和長方形三種方法,思維一下就開闊了。這里我并沒有為了證明而證明,也沒有怕浪費時間匆匆而過,而是給學生留下了充足的思考和討論時間,真正激發(fā)了學生的思維。
    2.通過設(shè)置一個“找朋友”的小游戲來辨析公式,調(diào)動了學生的積極性,活躍了課堂氣氛,因此,游戲過后學生對公式的結(jié)構(gòu)特征也有了更深刻的了解。
    3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認識公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學思想,最后是感受到數(shù)學運算的一種簡捷美,將本節(jié)課升華到了一個新的高度。
    當然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過程中遺漏了兩點,通過播放幻燈片才慌忙補充上;在處理學生練習時,為了抓緊時間完成進度沒有把學生的出錯點講透講細;游戲環(huán)節(jié)參與學生有些少,應(yīng)讓更多的同學動起來;當堂檢測的題目應(yīng)該設(shè)置上分值和檢測時間,讓學生限時完成,然后可以根據(jù)學生得分了解本節(jié)課的學習效果,以便下節(jié)課再有針對性的進行講解和練習查漏補缺。
    通過這次“同課異構(gòu)”活動,我感覺自己在教學環(huán)節(jié)設(shè)計、課件制作和使用、導學案的規(guī)范書寫等各方面都有了提高,通過各位領(lǐng)導和老師的點評,我也有了更多的收獲,相信可以為我今后的教學所用。
    平方差公式教學設(shè)計理念篇十
    學習方法:歸納、概括、總結(jié)。
    創(chuàng)設(shè)問題情境,引入新課。
    在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
    如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
    1、請看乘法公式。
    (a+b)(a-b)=a2-b2(1)。
    左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是。
    a2-b2=(a+b)(a-b)(2)。
    利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
    a2-b2=(a+b)(a-b)。
    如x2-16。
    =(x)2-42。
    =(x+4)(x-4)。
    9m2-4n2。
    =(3m)2-(2n)2。
    =(3m+2n)(3m-2n)。
    例1、把下列各式分解因式:
    例2、把下列各式分解因式:。
    (1)9(m+n)2-(m-n)2;(2)2x3-8x.
    補充例題:判斷下列分解因式是否正確。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)(a2-1)。
    1、教科書習題。
    2、分解因式:x4-16x3-4x4x2-(y-z)2。
    3、若x2-y2=30,x-y=-5求x+y。
    平方差公式教學設(shè)計理念篇十一
    會推導公式(a+b)(a-b)=a2-b2。
    通過教學我對本節(jié)課的反思如下:
    1、本節(jié)課我從復習舊知入手,在教學設(shè)計時提供充分探索與交流的空間,使學生經(jīng)歷觀察,猜測、推理、交流、等活動。對于平方差公式的教學要重視結(jié)果更要重視其發(fā)現(xiàn)過程,充分發(fā)揮其教育價值。不要回到傳統(tǒng)的“講公式、用公式、練公式、背公式”學生被動學習的局面。我在教學時沒有直接讓學生推導平方差公式,而是設(shè)置了一個做一做,讓學生通過計算四個多項式乘以多項式的題目,讓學生通過運算并觀察這幾個算式及其結(jié)果,自己發(fā)現(xiàn)規(guī)律。目的是讓學生經(jīng)歷觀察、歸納、概括公式的全過程,以培養(yǎng)學生學習數(shù)學的一般能力,讓學生體會發(fā)現(xiàn)的愉悅,激發(fā)學生學習數(shù)學的興趣,感覺效果很好。
    不足:在學生將4個多項式乘多項式做完評價后,應(yīng)及時把他們歸納為某式的平方差的形式,以便學生順理成章的猜測公式的結(jié)果。
    2、學生剛接觸這類乘法,我設(shè)計了兩個問題(1)等號左邊是幾個因式的積,兩個因式中的每一項有什么相同或不同之處。(2)等號右邊兩項有什么特點?便于學生發(fā)現(xiàn)總結(jié)。在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。平方差公式(a-b)(a+b)=a2-b2,它是特殊的整式的乘法,運用這一公式可以簡捷地計算出符合公式的特征的多項式乘法的結(jié)果.我很細地給學生講了以上特點,學生容易接受,課堂氣氛活躍,收到了一定的效果。
    3、本節(jié)課如能將平方差公式的幾何意義簡要的結(jié)合說明,更能體會數(shù)學中數(shù)形結(jié)合的特點,因時間關(guān)系放在下一課時。
    4、學生錯誤主要是:
    (1)判斷不出哪些項是公式中的a,哪些項是公式中的b;
    (2)平方時忽視系數(shù)的平方,如(2m)2=2m2。針對這一點在課堂教學中應(yīng)著重對于共性的或思維方式方面的錯誤及時指正,以確保達到教學效果。平方差公式是乘法公式中一個重要的公式,形式雖然簡單,學生往往學起來容易,真正掌握起來困難。部分學生只是死記硬背公式,不能完全理解其含義和具體應(yīng)用。
    總之,在以后的教學中我會更深入的專研教材,結(jié)合教學目標與要求,結(jié)合學生的實際特點,克服自己的弱點,盡量使數(shù)學課生動、自然、有趣。
    平方差公式教學設(shè)計理念篇十二
    三、教學目標。
    通過幾方面的合力,提高學生歸納概括、邏輯推理等核心素養(yǎng)水平.。
    四、教學重難點。
    五、信息技術(shù)應(yīng)用思路。
    1.本課運用了信息技術(shù)輔助教學,主要使用的技術(shù)有:ppt課件、幾何畫板.。
    (一)創(chuàng)設(shè)情境,導入課題。
    你能用簡便的方法計算出它的面積嗎?看誰算得快:
    師生活動:學生欣賞圖片,感受生活中的數(shù)學問題,并進行生活中的數(shù)學向數(shù)學模型轉(zhuǎn)換.。
    (二)探索新知,嘗試發(fā)現(xiàn)。
    計算下列多項式的積,你能發(fā)現(xiàn)什么規(guī)律?
    (1)(m+1)(m-1)=;
    (2)(5+x)(5-x)=;
    (3)(2x+1)(2x-1)=.。
    師生活動:學生在教師的引導下,通過小組討論探究,進行多項式的乘法,計算出結(jié)論.。
    信息技術(shù)支持:ppt動畫演示.。
    結(jié)論是一個平方減去另一個平方的形式,效果十分鮮明.。
    (三)總結(jié)歸納,發(fā)現(xiàn)新知。
    問題3:依照以上三道題的計算回答下列問題:
    (1)式子的左邊具有什么共同特征?
    (2)它們的結(jié)果有什么特征?
    (3)能不能用字母表示你的發(fā)現(xiàn)?
    問題4:你能用文字語言表示所發(fā)現(xiàn)的規(guī)律嗎?
    (四)數(shù)形結(jié)合,幾何說理。
    提示:a2-b2與(a+b)(a-b)都可表示該圖形的面積.。
    (五)剖析公式,發(fā)現(xiàn)本質(zhì)。
    (六)鞏固運用,內(nèi)化新知。
    問題6:判斷下列算式能否運用平方差公式計算:
    (1)(2x+3a)(2x–3b);
    (2)(-m+n)(m-n).。
    (1)(3x+2y)(3x-2y);
    (2)(-7+2m2)(-7-2m2).。
    信息技術(shù)支持:ppt展示書寫步驟,有利于節(jié)省時間,提高效率,規(guī)范學生書寫.。
    (七)拓展應(yīng)用,強化思維。
    問題8:利用平方差公式計算情景導航中提出的問題:
    信息技術(shù)支持:ppt展示書寫步驟,有利于節(jié)省時間.。
    (八)總結(jié)概括,自我評價。
    問題10:這節(jié)課你有哪些收獲?還有什么困惑?
    提示:從知識和情感態(tài)度兩個方面加以小結(jié).。
    師生活動:使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,分組討論后交流.。
    (九)課后作業(yè)。
    1.必做題:課本p36習題2.1a組1、2.。
    2.選做題:課本p36習題2.1b組1、2.。
    作業(yè)分層處理有較大的彈性,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,尊重學生的個體差異.。
    七、教學反思。
    平方差公式教學設(shè)計理念篇十三
    1、左邊為兩數(shù)的和乘以兩數(shù)的差,即在左邊是兩個二項式的積,在這兩個二項式中有一項(a)完全相同,另一項(b與-b)互為相反數(shù)。右邊為這兩個數(shù)的平方差即完全相同的項的平方減去符號相反的平方。
    2、公式中的a,b不僅可以表示具體的數(shù)字,還可以是單項式,多項式等代數(shù)式。
    提醒學生利用平方公式計算,首先觀察是否符合公式的特點,這兩個數(shù)分別是什么,其次要區(qū)別相同的項和相反的項,表示兩數(shù)平方差時要加括號。
    平方差公式教學設(shè)計理念篇十四
    1、把數(shù)學問題“蘊藏”在游戲中。
    導入新課,是課堂教學的重要一環(huán)。“好的開始是成功的一半”,首先是一個智力搶答,學生通過搶答初步感知平方差公式,接下來,采用小組合作學習的方式,利用“四問”讓學生進行試驗操作,學生選擇的字母有很多種,讓它們都有其共性。由此,學生在探索中驗證自己的猜想,同時也感受和認識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學習方式的教學,我發(fā)現(xiàn)也真正體會到,只要我們給學生創(chuàng)造一個自由活動的空間,學生便會還給我們一個意外的驚喜。
    2、充分重視“自主、合作、探究”的教學方式的運用。
    把探究的機會留給學生,讓學生在動腦思考中構(gòu)建知識,真正成為教學活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習、應(yīng)用,深化了對規(guī)律的理解。學生對知識的掌握往往通過練習來達到目的。新授后要有針對性強的有效訓練,讓學生對所學知識建立初步的表象,以達到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認識到理性認識的升華。在此設(shè)計了三個層次的有效訓練,讓學生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學生歸納出平方差公式的運用技巧。
    3、自置懸念,享受成功。
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學生每人都設(shè)計了題目,任意叫了四位學生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學習過程,使學生獲得思維之趣,參與之樂,成功之悅。
    4、切實落在實效上。
    本節(jié)課在采用小組學習之后,為了讓學生的鞏固有效果,采用了學生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學習效果不錯。
    5、值得注意的是:
    1、節(jié)奏的把握上。
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學生的主體地位上。
    這節(jié)課上,我覺得學生的積極性不很高,回答問題沒有激情,說明我背學生還不夠,自己想象的比現(xiàn)實的好。