高中數(shù)學(xué)說課教案(精選17篇)

字號:

    在教學(xué)過程中,教案起著橋梁作用,可以幫助教師更好地組織教學(xué)內(nèi)容和方法。編寫教案時,應(yīng)注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新思維,培養(yǎng)學(xué)生的批判性思維和問題解決能力。以下是小編為大家整理的教案樣例,希望對大家的教學(xué)工作有所幫助。
    高中數(shù)學(xué)說課教案篇一
    各位同仁,各位專家:
    教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。
    地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。
    教學(xué)重點:任意角三角函數(shù)的定義。
    學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力。
    1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
    2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
    針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下。
    (1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,
    (1)理解并掌握任意角的三角函數(shù)的定義;
    (2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);
    (3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。
    (1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;
    針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法。
    教法學(xué)法:溫故知新,逐步拓展。
    (2)通過例題講解分析,逐步引出新知識,完善三角定義。
    運用多媒體工具。
    (1)提高直觀性增強趣味性。
    教學(xué)過程分析。
    總體來說,由舊及新,由易及難,
    逐步加強,逐步推進。
    先由初中的直角三角形中銳角三角函數(shù)的定義。
    過度到直角坐標(biāo)系中銳角三角函數(shù)的定義。
    再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
    給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。
    具體教學(xué)過程安排。
    引入:復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
    由學(xué)生回答。
    sina=對邊/斜邊=bc/ab。
    cosa=對邊/斜邊=ac/ab。
    tana=對邊/斜邊=bc/ac。
    逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。
    從而得到。
    知識點一:任意一個角的三角函數(shù)的定義。
    提醒學(xué)生思考:由于相似比相等,對于確定的角a,這三個比值的大小和p點在角的終邊上的位置無關(guān)。
    精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義。
    例1已知角a的終邊經(jīng)過p(2,—3),求角a的三個三角函數(shù)值。
    (此題由學(xué)生自己分析獨立動手完成)。
    例題變式1,已知角a的大小是30度,由定義求角a的三個三角函數(shù)值。
    提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?
    從而引出函數(shù)極其定義域。
    由學(xué)生分析討論,得出結(jié)論。
    知識點二:三個三角函數(shù)的定義域。
    知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系。
    由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶。
    例題2:已知a在第二象限且sina=0。2求cosa,tana。
    求cosa,tana。
    綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)。
    拓展,如果不限制a的象限呢,可以留作課外探討。
    小結(jié)回顧課堂內(nèi)容。
    課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解。
    課堂作業(yè)p161,2,4。
    (學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)。
    課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)。
    必作p231(2),5(2),6(2)(4)選作p233,4。
    板書設(shè)計(見ppt)。
    高中數(shù)學(xué)說課教案篇二
    集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
    教學(xué)重點.難點
    重點:集合的含義與表示方法.
    難點:表示法的恰當(dāng)選擇.
    教學(xué)目標(biāo)
    l.知識與技能
    (1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
    (2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
    (4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
    2.過程與方法
    (1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
    (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.
    3.情感.態(tài)度與價值觀
    使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.
    1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).
    (一)創(chuàng)設(shè)情景,揭示課題
    1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
    (2)問題:像“家庭”、“學(xué)?!?、“班級”等,有什么共同特征?
    引導(dǎo)學(xué)生互相交流.與此同時,教師對學(xué)生的活動給予評價.
    2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
    由此引出這節(jié)要學(xué)的內(nèi)容。
    設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
    (二)研探新知,建構(gòu)概念
    1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
    (1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
    (3)所有的安理會常任理事國; (4)所有的正方形;
    (5)海南省在20xx年9月之前建成的所有立交橋;
    (6)到一個角的兩邊距離相等的所有的點;
    (7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.
    2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
    3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
    4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.
    設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
    (三)質(zhì)疑答辯,發(fā)展思維
    1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
    2.教師組織引導(dǎo)學(xué)生思考以下問題:
    判斷以下元素的全體是否組成集合,并說明理由:
    (1)大于3小于11的偶數(shù);(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.
    3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.
    4.教師提出問題,讓學(xué)生思考
    高一(4)班的一位同學(xué),那么a,b與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
    如果a是集合a的元素,就說a屬于集合a,記作a?a.
    如果a不是集合a的元素,就說a不屬于集合a,記作a?a.
    (2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.
    (3)讓學(xué)生完成教材第6頁練習(xí)第1題.
    5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1a組第1題.
    6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
    (1)要表示一個集合共有幾種方式?
    (2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
    (3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?
    使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
    設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
    (四)鞏固深化,反饋矯正
    教師投影學(xué)習(xí):
    (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.
    設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
    (五)歸納小結(jié),布置作業(yè)
    小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
    1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?
    3.選擇集合的表示法時應(yīng)注意些什么?
    設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。
    作業(yè):1.課后書面作業(yè):第13頁習(xí)題1.1a組第4題.
    2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
    呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.
    高中數(shù)學(xué)說課教案篇三
    熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
    教學(xué)重難點。
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    兩角差的余弦公式。
    用-b代替b看看有什么結(jié)果?
    高中數(shù)學(xué)說課教案篇四
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
    通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
    借助單位圓探究誘導(dǎo)公式。
    能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
    誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
    誘導(dǎo)公式的應(yīng)用。
    多媒體。
    1. 誘導(dǎo)公式(一)(二)。
    2. 角 (終邊在一條直線上)
    3. 思考:下列一組角有什么特征?( )能否用式子來表示?
    已知 由
    可知
    而 (課件演示,學(xué)生發(fā)現(xiàn))
    所以
    于是可得: (三)
    設(shè)計意圖:結(jié)合幾何畫板的演示利用同一點的坐標(biāo)變換,導(dǎo)出公式。
    由公式(一)(三)可以看出,角 角 相等。即:
    .
    公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
    設(shè)計意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點,總結(jié)公式。
    1. 練習(xí)
    (1)
    設(shè)計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
    (學(xué)生板演,老師點評,用彩色粉筆強調(diào)重點,引導(dǎo)學(xué)生總結(jié)公式。)
    例3:求下列各三角函數(shù)值:
    (1)
    (2)
    (3)
    (4)
    設(shè)計意圖:利用公式解決問題。
    練習(xí):
    (1)
    (2) (學(xué)生板演,師生點評)
    設(shè)計意圖:觀察公式特點,選擇公式解決問題。
    四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
    很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
    1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點把握要到位
    2.注意板書設(shè)計,注重細(xì)節(jié)的東西,語速需要改正
    3.進一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
    5.上課的生動化,形象化需要加強
    1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導(dǎo)數(shù)學(xué)時,最好值有個側(cè)重點;網(wǎng)絡(luò)設(shè)計上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
    2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
    3.評議者:學(xué)科網(wǎng)絡(luò)平臺的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗。
    4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進行探究。
    建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。
    ( 1)給學(xué)生思考的時間較長,語調(diào)相對平緩,總結(jié)時,給學(xué)生一些激勵的語言更好
    ( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時間思考
    ( 4)給學(xué)生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
    ( 5)1.板書設(shè)計要進一步的加強,2.語速相對是比較快的3.練習(xí)量比較少
    ( 6)讓學(xué)生多探究,課堂會更熱鬧
    ( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
    ( 8)教學(xué)模式相對簡單重復(fù)
    ( 9)思路較為清晰,規(guī)范化的推理
    高中數(shù)學(xué)說課教案篇五
    了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。
    【自學(xué)質(zhì)疑】
    漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
    2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
    3.經(jīng)過兩點 的雙曲線的標(biāo)準(zhǔn)方程是 。
    4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
    5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
    【例題精講】
    1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
    2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點對稱的兩個點,點 是橢圓上任意一點,當(dāng)直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
    3.設(shè)雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
    【矯正鞏固】
    1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
    2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
    3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
    4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
    【遷移應(yīng)用】
    2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
    3. 雙曲線 的焦距為
    4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
    5. 設(shè) 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
    高中數(shù)學(xué)說課教案篇六
    1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。2.培養(yǎng)學(xué)生的計算技能、計算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
    本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個部分構(gòu)成。
    1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時數(shù)為128學(xué)時。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實際情況進行選擇和安排教學(xué),教學(xué)時數(shù)為32~64學(xué)時。
    (一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個層次)
    了解:初步知道知識的含義及其簡單應(yīng)用。
    理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項技能與四項能力)
    計算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學(xué)型計算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
    空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
    分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
    數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
    (二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時)第1單元集合(10學(xué)時)
    第2單元不等式(8學(xué)時)
    第3單元函數(shù)(12學(xué)時)
    第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時)
    第5單元三角函數(shù)(18學(xué)時)
    第6單元數(shù)列(10學(xué)時)
    第7單元平面向量(矢量)(10學(xué)時)
    第8單元直線和圓的方程(18學(xué)時)
    第9單元立體幾何(14學(xué)時)
    第10單元概率與統(tǒng)計初步(16學(xué)時)
    2.職業(yè)模塊
    第1單元三角計算及其應(yīng)用(16學(xué)時)
    第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時)
    第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時)
    高中數(shù)學(xué)說課教案篇七
    2. 你尊敬老師、團結(jié)同學(xué)、熱愛勞動、關(guān)心集體,所以大家都喜歡你。能嚴(yán)格遵守學(xué)校的各項規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
    3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時候你都能遵守紀(jì)律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認(rèn)識到自己的不足,在課堂上能認(rèn)真聽講,開動腦筋,遇到問題敢于請教。
    4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學(xué)們及時安靜,對學(xué)習(xí)態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!
    5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴(yán)格遵守學(xué)校的各項規(guī)章制度。上課能專心聽講,認(rèn)真做好筆記,課后能按時完成作業(yè)。記憶力好,自學(xué)能力較強。希望你能更主動地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!
    6. 作為本班的班長,你對待班級工作能夠認(rèn)真負(fù)責(zé),積極配合老師和班委工作,集體榮譽感很強,人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級管理上有進步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進步!
    7. 身為班委的你,對工作認(rèn)真負(fù)責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學(xué)習(xí)上,你認(rèn)真聽課,及時完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動,沒有形成自己的一套方法,若從被動的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!
    8. 你是個懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進,若能做到學(xué)習(xí)時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!
    9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認(rèn)真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認(rèn)真做好筆記。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
    10. 記得和你說過,你是個太聰明的孩子,你反應(yīng)敏捷,活潑靈動。但是做學(xué)問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學(xué)如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進入狀態(tài),不辜負(fù)關(guān)愛你的人對你的殷殷期盼。
    高中數(shù)學(xué)說課教案篇八
    (2)進一步理解曲線的方程和方程的曲線。
    (3)初步掌握求曲線方程的方法。
    (4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。
    求曲線的方程。
    計算機。
    啟發(fā)引導(dǎo)法,討論法。
    【引入】。
    1.提問:什么是曲線的方程和方程的曲線。
    學(xué)生思考并回答,教師強調(diào)。
    2.坐標(biāo)法和解析幾何的意義、基本問題。
    對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何,解析幾何的兩大基本問題就是:
    (1)根據(jù)已知條件,求出表示平面曲線的方程。
    (2)通過方程,研究平面曲線的性質(zhì)。
    【問題】。
    如何根據(jù)已知條件,求出曲線的方程。
    【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
    分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
    首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:
    (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);
    (2)寫出適合條件的點的集合;
    (3)用坐標(biāo)表示條件,列出方程;
    (4)化方程為最簡形式;
    (5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.
    上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正。
    下面再看一個問題:
    【小結(jié)】師生共同總結(jié):
    (1)解析幾何研究研究問題的方法是什么?
    (2)如何求曲線的方程?
    【作業(yè)】課本第72頁練習(xí)1,2,3;
    高中數(shù)學(xué)說課教案篇九
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
    (1)、基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
    1、教學(xué)重點。
    理解并掌握誘導(dǎo)公式、
    2、教學(xué)難點。
    正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式、
    1、教法。
    2、學(xué)法。
    3、預(yù)期效果。
    (一)創(chuàng)設(shè)情景。
    1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
    2、復(fù)習(xí)任意角的三角函數(shù)定義;。
    3、問題:由,你能否知道sin2100的值嗎?引如新課、
    高中數(shù)學(xué)說課教案篇十
    (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
    (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
    (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
    重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.
    1.新課導(dǎo)入
    在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點是邏輯性強,特別是進入高中以后,所學(xué)的教學(xué)比初中更強調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
    (從初中接觸過的“命題”入手,提出問題,進而學(xué)習(xí)邏輯的有關(guān)知識.)
    學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
    兩直線平行,同位角相等.…………(2)
    教師提問:“……相等的角是對頂角”是不是命題?……(3)
    (同學(xué)議論結(jié)果,答案是肯定的)
    教師提問:什么是命題?
    (學(xué)生進行回憶、思考.)
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.
    (教師肯定了同學(xué)的回答,并作板書.)
    由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
    (教師利用投影片,和學(xué)生討論以下問題.)
    例1 判斷以下各語句是不是命題,若是,判斷其真假:
    命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
    初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
    2.講授新課
    (片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.
    判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
    “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
    對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
    對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
    對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補集 .
    命題可分為簡單命題和復(fù)合命題.
    不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
    由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
    (4)命題的表示:用 , , , ,……來表示.
    (教師根據(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)
    我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
    給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
    對于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .
    在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
    3.鞏固新課
    例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
    (1) ;
    (2)0.5非整數(shù);
    (3)內(nèi)錯角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若 ,則 .
    (讓學(xué)生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)
    例3 寫出下表中各給定語的否定語(用課件打出來).
    若給定語為
    等于
    大于
    是
    都是
    至多有一個
    至少有一個
    至多有個
    其否定語分別為
    分析:“等于”的否定語是“不等于”;
    “大于”的否定語是“小于或者等于”;
    “是”的否定語是“不是”;
    “都是”的否定語是“不都是”;
    “至多有一個”的否定語是“至少有兩個”;
    “至少有一個”的否定語是“一個都沒有”;
    “至多有 個”的否定語是“至少有 個”.
    (如果時間寬裕,可讓學(xué)生討論后得出結(jié)論.)
    置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時間作適當(dāng)?shù)谋嫖雠c展開.)
    4.課堂練習(xí):第26頁練習(xí)1
    5.課外作業(yè):第29頁習(xí)題1.6
    高中數(shù)學(xué)說課教案篇十一
    1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).。
    2.能識別和理解簡單的框圖的功能.。
    3.能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.。
    一、問題情境。
    1.情境:
    某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為。
    其中(單位:)為行李的重量.。
    試給出計算費用(單位:元)的.一個算法,并畫出流程圖.。
    二、學(xué)生活動。
    學(xué)生討論,教師引導(dǎo)學(xué)生進行表達(dá).。
    解算法為:
    輸入行李的重量;
    如果,那么,
    否則;
    輸出行李的重量和運費.。
    上述算法可以用流程圖表示為:
    教師邊講解邊畫出第10頁圖1-2-6.。
    在上述計費過程中,第二步進行了判斷.。
    1.選擇結(jié)構(gòu)的概念:
    先根據(jù)條件作出判斷,再決定執(zhí)行哪一種。
    操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).。
    2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判。
    斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
    (3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)。
    行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
    (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和。
    兩個退出點.。
    3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
    高中數(shù)學(xué)說課教案篇十二
    教學(xué)內(nèi)容:
    整十?dāng)?shù)加一位數(shù)及相應(yīng)的減法。
    教學(xué)目標(biāo):
    1、讓學(xué)生經(jīng)歷兩位數(shù)加、減一位數(shù)的口算方法的探索過程,能比較熟練的進行口算。并了解加、減發(fā)算式中各部分的名稱。
    2、在根據(jù)數(shù)的組成探索口算方法的過程中,體會知識間的內(nèi)在聯(lián)系,發(fā)展思維能力和口算能力。
    3、培養(yǎng)用數(shù)學(xué)的觀念看周圍的事物的意識,培養(yǎng)同學(xué)之間的相互合作、交流的態(tài)度。
    教學(xué)重難點:
    兩位數(shù)加、減一位數(shù)的口算方法。
    教學(xué)準(zhǔn)備:
    課件。
    教學(xué)過程:
    2個十和5個一合起來是(),8個十和4個一合起來是()。95里面是由()個十和()個一組成。81里面有()個十和()個一。
    1、出示32頁情景圖。
    2、提問:你能從圖中獲得哪些數(shù)學(xué)信息?能提出一個數(shù)學(xué)問題嗎?
    學(xué)生回答:梳理問題。
    (1)一共有多少個桃?
    (2)一共有34個桃,去掉框里的30個,還剩多少個桃?
    3、怎樣列式?
    (1)先想一想。
    (2)小組交流。
    小組內(nèi)交流自己的算法。
    (3)指名小組匯報。
    結(jié)合學(xué)生回答小結(jié):根據(jù)看圖,數(shù)出來的;用小棒擺出來的;根據(jù)數(shù)的組成來思考的。34+4就是把3個十和4個一合起來,是34;34-30就是從34里去掉3個十,還剩4個一,是4。
    4、解答“試一試”。
    提問:4+30等于多少,你又可以怎樣算?
    (1)先想一想。
    (2)小組交流。
    小組內(nèi)交流自己的算法。
    (3)指名小組匯報。
    4個一和3個十和起來是34;因為30+4=34,所以4+30=34。
    談話:“34-4”你會算嗎?填在書上,并輕聲地說說你是怎樣想的。
    指名回答,結(jié)合學(xué)生回答適當(dāng)補充。
    5、介紹算式中各部分的名稱。
    (1)介紹加法算式中各部分的名稱。
    談話:每個小朋友都有自己的名子,在每一個算式中每個部分也都有各自的名子。在加法算式30+4=34中,相加的兩個數(shù)都叫做加數(shù)。兩個加數(shù)相加的結(jié)果叫做和。
    (2)介紹減法算式各部分的名稱。
    (3)指名說出算式4+30=34,34-4=30中各部分的名稱。
    1、“想想做做”第1題。
    (1)出示圖,讓學(xué)生說圖意。
    (2)根據(jù)圖意,列出四個算式。
    (3)說說每道算式表達(dá)什么意思。
    2、“想想做做”第2題。
    先獨立完成,再說說怎樣想的?
    提問:根據(jù)60+3=63你能想到其他三個算式嗎?
    3、“想想做做”第3題。
    先獨立完成,再說說是怎樣想的,集體核對結(jié)果。
    4、“想想做做”第4題。
    根據(jù)表中第一行的名稱說說左表用什么方法計算,右表用什么方法計算。
    5、“想想做做”第5題。
    先了解“相鄰數(shù)”是什么意思,再寫數(shù)交流。
    6、“想想做做”第6、7題。
    先說說每題中的.已知條件和要求的問題。
    再自己獨立完成。
    同桌交流并說說是怎樣想的。
    高中數(shù)學(xué)說課教案篇十三
    【知識與技能】。
    在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
    【過程與方法】。
    通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
    【情感態(tài)度與價值觀】。
    滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
    【重點】。
    掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
    【難點】。
    二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的'關(guān)系。
    三、教學(xué)過程。
    (一)復(fù)習(xí)舊知,引出課題。
    1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
    2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
    高中數(shù)學(xué)說課教案篇十四
    1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
    2.過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。
    難點:識別三視圖所表示的空間幾何體。
    觀察、動手實踐、討論、類比。
    (一)創(chuàng)設(shè)情景,揭開課題
    展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
    (二)講授新課
    1、中心投影與平行投影:
    中心投影:光由一點向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
    長對正:正視圖與俯視圖的長相等,且相互對正;
    高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
    寬相等:俯視圖與側(cè)視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習(xí)
    課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
    (四)歸納整理
    請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
    (五)布置作業(yè)
    課本p20習(xí)題1.2[a組]1。
    高中數(shù)學(xué)說課教案篇十五
    圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
    我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
    由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
    1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
    2.通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
    3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
    教學(xué)重點。
    1.對圓錐曲線定義的理解。
    2.利用圓錐曲線的定義求“最值”
    3.“定義法”求軌跡方程。
    教學(xué)難點:。
    巧用圓錐曲線定義解題。
    【設(shè)計思路】。
    (一)開門見山,提出問題。
    一上課,我就直截了當(dāng)?shù)亟o出——。
    例題1:(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。
    (a)橢圓(b)雙曲線(c)線段(d)不存在。
    (2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。
    (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。
    【設(shè)計意圖】。
    定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的.認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
    為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。
    【學(xué)情預(yù)設(shè)】。
    入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
    在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。
    (二)理解定義、解決問題。
    高中數(shù)學(xué)說課教案篇十六
    理解數(shù)列的概念,掌握數(shù)列的運用。
    理解數(shù)列的概念,掌握數(shù)列的運用。
    【知識點精講】。
    1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))。
    2、通項公式:數(shù)列的.第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。
    (通項公式不)。
    3、數(shù)列的表示:。
    (1)列舉法:如1,3,5,7,9……;。
    (2)圖解法:由(n,an)點構(gòu)成;。
    (3)解析法:用通項公式表示,如an=2n+1。
    5、任意數(shù)列{an}的前n項和的性質(zhì)。
    高中數(shù)學(xué)說課教案篇十七
    3.進一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
    問題的提出與解決。
    如何進行問題的探究。
    啟發(fā)探究式。
    研究方向提示:
    1.?dāng)?shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
    2.研究所給數(shù)列的項之間的關(guān)系;
    3.研究所給數(shù)列的子數(shù)列;
    4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
    5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
    6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實際意義等)。
    針對學(xué)生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
    課堂小結(jié):
    1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?
    2.你最喜歡哪位同學(xué)的研究?為什么?
    開展研究性學(xué)習(xí),培養(yǎng)問題解決能力。
    一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動:學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會生活中選擇課題,以類似科學(xué)研究的方式去主動地獲取知識、應(yīng)用知識、解決問題。
    “問題解決”(problemsolving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號,即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。
    問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學(xué)教學(xué)活動中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。
    二、“問題解決”課堂教學(xué)模式的建構(gòu)與實踐以研究性學(xué)習(xí)活動為載體,以培養(yǎng)問題解決能力為核心的'課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
    (一)關(guān)于“問題解決”課堂教學(xué)模式。
    通過實施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結(jié)協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學(xué)基礎(chǔ)知識、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識。
    (二)數(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)。
    數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
    (三)“問題解決”課堂教學(xué)模式的教學(xué)流程。
    (四)“問題解決”課堂教學(xué)評價標(biāo)準(zhǔn)。
    1.教學(xué)目標(biāo)的確定;
    2.教學(xué)方法的選擇;
    3.問題的選擇;
    4.師生主體意識的體現(xiàn);
    5.教學(xué)策略的運用。
    (五)了解學(xué)生的數(shù)學(xué)問題解決能力的途徑。
    (六)開展研究性學(xué)習(xí)活動對教師的能力要求。