高一數(shù)學的教案(實用20篇)

字號:

    教案是教師為了教學目標,根據(jù)教學內(nèi)容和要求,編寫的教學計劃和指導材料。教案的編寫應根據(jù)學生的實際情況合理安排教學步驟在這里分享一些教學設計的范例,希望能夠幫助大家提升教學水平。
    高一數(shù)學的教案篇一
    (2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;。
    (3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;。
    (4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;。
    (5)會用真值表判斷相應的復合命題的真假;。
    (6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.
    二、教學重點難點:
    重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
    三、教學過程。
    1.新課導入。
    在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
    初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)。
    學生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學議論結果,答案是肯定的.)。
    教師提問:什么是命題?
    (學生進行回憶、思考.)。
    概念總結:對一件事情作出了判斷的語句叫做命題.
    (教師肯定了同學的回答,并作板書.)。
    由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
    (教師利用投__,和學生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
    初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.
    2.講授新課。
    (片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.
    判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
    (2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.
    “或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞.邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
    對“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
    對“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個條件都要滿足的意思.
    對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題對應于集合,則命題非就對應著集合在全集中的補集.
    命題可分為簡單命題和復合命題.
    不含邏輯聯(lián)結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.
    由簡單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結詞“且”構成的復合命題.
    (4)命題的表示:用,,,,……來表示.
    (教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)。
    我們接觸的復合命題一般有“或”、“且”、“非”、“若則”等形式.
    給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯(lián)結詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題.
    對于給出“若則”形式的復合命題,應能找到條件和結論.
    在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.
    3.鞏固新課。
    例2判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.
    (1);。
    (2)0.5非整數(shù);。
    (3)內(nèi)錯角相等,兩直線平行;。
    (4)菱形的對角線互相垂直且平分;。
    (5)平行線不相交;。
    (6)若,則.
    (讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)。
    例3寫出下表中各給定語的否定語(用課件打出來).
    若給定語為。
    等于。
    大于。
    是
    都是。
    至多有一個。
    至少有一個。
    至多有#formatimgid_0#個。
    其否定語分別為。
    分析:“等于”的否定語是“不等于”;。
    “大于”的否定語是“小于或者等于”;。
    “是”的否定語是“不是”;。
    “都是”的否定語是“不都是”;。
    “至多有一個”的否定語是“至少有兩個”;。
    “至少有一個”的否定語是“一個都沒有”;。
    “至多有個”的否定語是“至少有個”.
    (如果時間寬裕,可讓學生討論后得出結論.)。
    置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)。
    4.課堂練習:第26頁練習1,2.
    5.課外作業(yè):第29頁習題1.61,2.
    高一數(shù)學的教案篇二
    一、三維目標:
    知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
    過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。
    情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操。通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質(zhì)。
    二、學習重、難點:
    重點:函數(shù)的奇偶性的概念。
    難點:函數(shù)奇偶性的判斷。
    三、學法指導:
    學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
    四、知識鏈接:
    1、復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
    2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
    五、學習過程:
    函數(shù)的奇偶性:
    (1)對于函數(shù),其定義域關于原點對稱:
    如果______________________________________,那么函數(shù)為偶函數(shù)。
    (2)奇函數(shù)的圖象關于__________對稱,偶函數(shù)的圖象關于_________對稱。
    (3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
    六、達標訓練:
    a1、判斷下列函數(shù)的奇偶性。
    (1)f(x)=x4;(2)f(x)=x5;。
    (3)f(x)=x+(4)f(x)=。
    a2、二次函數(shù)()是偶函數(shù),則b=___________。
    b3、已知,其中為常數(shù),若,則。
    _______。
    b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關于()。
    (a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
    b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
    c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。
    時,=_______。
    d7、設是上的奇函數(shù),,當時,,則等于()。
    (a)0.5(b)(c)1.5(d)。
    d8、定義在上的奇函數(shù),則常數(shù)____,_____。
    七、學習小結:
    本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱。單調(diào)性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。
    八、課后反思:
    高一數(shù)學的教案篇三
    2、實際問題中的有關術語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
    (3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    2、實際問題中的有關術語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    一、知識歸納
    2、實際問題中的有關術語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實際問題的常見題型有:
    測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
    二、例題討論
    一)利用方向角構造三角形
    四)測量角度問題
    例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
    高一數(shù)學的教案篇四
    目標:
    1.讓學生熟練掌握二次函數(shù)的圖象,并會判斷一元二次方程根的存在性及根的個數(shù);。
    2.讓學生了解函數(shù)的零點與方程根的聯(lián)系;。
    3.讓學生認識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點中的作用;。
    4。培養(yǎng)學生動手操作的能力。
    二、教學重點、難點。
    重點:零點的概念及存在性的判定;
    難點:零點的確定。
    三、復習引入。
    例1:判斷方程x2-x-6=0解的存在。
    分析:考察函數(shù)f(x)=x2-x-6,其。
    圖像為拋物線容易看出,f(0)=-60,。
    f(4)0,f(-4)0。
    由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
    點b(0,-6)與點c(4,6)之間的那部分曲線。
    必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點。
    x1使f(x1)=0;同樣,在區(qū)間(-4,0)內(nèi)也至。
    少有點x2,使得f(x2)=0,而方程至多有兩。
    個解,所以在(-4,0),(0,4)內(nèi)各有一解。
    定義:對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)x叫函數(shù)y=f(x)的零點。
    抽象概括。
    y=f(x)的圖像與x軸的交點的橫坐標叫做該函數(shù)的零點,即f(x)=0的解。
    若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個零點,即f(x)=0在(a,b)內(nèi)至少有一個實數(shù)解。
    f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點。
    所以求方程f(x)=0的根實際上也是求函數(shù)y=f(x)的零點。
    3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
    4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)。
    5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/x,有f(-1)xf(1)0但沒有零點。
    四、知識應用。
    解:f(x)=3x-x2的圖像是連續(xù)曲線,因為。
    f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,。
    練習:求函數(shù)f(x)=lnx+2x-6有沒有零點?
    例3判定(x-2)(x-5)=1有兩個相異的實數(shù)解,且有一個大于5,一個小于2。
    解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有。
    f(5)=(5-2)(5-5)-1=-1。
    f(2)=(2-2)(2-5)-1=-1。
    又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個交點,在(-,2)內(nèi)也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數(shù)解,且一個大于5,一個小于2。
    練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內(nèi),求m的取值范圍。
    五、課后作業(yè)。
    p133第2,3題。
    高一數(shù)學的教案篇五
    把實物圓柱放在講臺上讓學生畫。
    2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
    (二)研探新知。
    1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
    畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
    練習反饋。
    根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
    2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
    教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
    教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
    3.探求空間幾何體的直觀圖的畫法。
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖。
    請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
    4.平行投影與中心投影。
    投影出示課本p23圖,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
    5.鞏固練習,課本p25練習1,2,3。
    三、歸納整理。
    學生回顧斜二測畫法的關鍵與步驟。
    四、作業(yè)。
    1.書畫作業(yè),課本p25習題1—3a組和b組。
    高一數(shù)學的教案篇六
    教學目的:
    (1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法。
    (2)使學生初步了解“屬于”關系的意義。
    (3)使學生初步了解有限集、無限集、空集的意義。
    教學重點:集合的基本概念及表示方法。
    教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示。
    一些簡單的集合。
    授課類型:新授課。
    課時安排:1課時。
    教具:多媒體、實物投影儀。
    內(nèi)容分析:
    高一數(shù)學的教案篇七
    一、指導思想:
    使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
    1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質(zhì),了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
    高一下學期數(shù)學教學計劃3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
    4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
    5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
    6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
    二、
    我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(a版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性等到,具有如下特點:
    1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
    2.問題性:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
    4.時代性與應用性:以具有時代性和現(xiàn)實感的.素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識。
    1)選取與內(nèi)容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
    2)通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
    3)在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
    1、基本情況:12班共66人,男生22人,女生44人;本班相對而言,數(shù)學尖子約3人,中上等生約10人,中等生約11人,中下生約20人,后進生約12人。13班共59人,男生39人,女生20人;本班相對而言,數(shù)學尖子約12人,中上等生約12人,中等生約21人,中下生約7人,后進生約7人。
    2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
    a)激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
    b)注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
    c)加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
    d)抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
    e)自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    高一數(shù)學的教案篇八
    本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論.
    本節(jié)的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設計問題引導啟發(fā):由設計的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導學生猜想出
    (2)從算術平方根的意義引入.
    2.性質(zhì)的鞏固有兩個方面需要注意:
    (1)注意與性質(zhì)進行對比,可出幾道類型不同的題進行比較;
    (2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等.
    (第1課時)
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡二次根式
    3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法
    對比、歸納、總結
    1.重點:理解并掌握二次根式的性質(zhì)
    2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關的二次根式.
    1課時
    五、教b具學具準備
    投影儀、膠片、多媒體
    復習對比,歸納整理,應用提高,以學生活動為主
    一、導入新課
    我們知道,式子()表示非負數(shù)的算術平方根.
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負數(shù)的算術平方根,即,且,從而可以取任意實數(shù).
    二、新課
    計算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結果和相應的被開方數(shù)的冪的底數(shù)有什么關系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結論?并用語言敘述你的結論.
    高一數(shù)學的教案篇九
    所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
    知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內(nèi)核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調(diào)雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。
    過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)?!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結果。
    情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦小B(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
    三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
    高一數(shù)學的教案篇十
    3.能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
    一、預習檢查。
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為.
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為.
    3、雙曲線的漸進線方程為.
    4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.
    二、問題探究。
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關系.
    練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標準方程.
    (1)過點,離心率.
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.
    例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點的雙曲線標準方程.
    三、思維訓練。
    1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=.
    4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.
    四、知識鞏固。
    1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.
    2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為.
    3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高一數(shù)學的教案篇十一
    (5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。
    初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數(shù)。講解例題,總結方法,鞏固練習。
    任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解。
    本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應關系,也表明了這兩個函數(shù)之間的關系。
    教學重難點。
    重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
    難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。
    高一數(shù)學的教案篇十二
    通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法
    培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
    [教學重點、難點]:會正確應用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
    [教學方法]:講練結合法
    [授課類型]:復習課
    [課時安排]:1課時
    [教學過程]:集合部分匯總
    本單元主要介紹了以下三個問題:
    1,集合的含義與特征
    2,集合的表示與轉(zhuǎn)化
    3,集合的基本運算
    一,集合的含義與表示(含分類)
    1,具有共同特征的對象的全體,稱一個集合
    2,集合按元素的個數(shù)分為:有限集和無窮集兩類
    高一數(shù)學的教案篇十三
    拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數(shù)。
    二、確定每部分的答題時間。
    1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
    2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
    三、碰到難題時。
    1、你可以先用“直覺”最快的找到解題思路;。
    2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
    3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
    4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
    四、卷面整潔、字跡清楚、注意小節(jié)。
    做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
    高一數(shù)學的教案篇十四
    對數(shù)函數(shù)(第二課時)是20__人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
    二、教學目標。
    根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:
    學習目標:
    1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)。
    2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小。
    能力目標:
    1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結合能力。
    2、學生運用已學知識,已有經(jīng)驗解決新問題的能力。
    3、探索出方法,有條理闡述自己觀點的能力。
    德育目標:
    培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)。
    三、教材的重點及難點。
    教學中將在以下2個環(huán)節(jié)中突出教學重點:
    1、利用學生預習后的心得交流,資源共享,互補不足。
    2、通過適當?shù)木毩?,加強對解題方法的掌握及原理的理解。
    教學中會在以下3個方面突破教學難點:
    1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
    2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    四、學生學情分析。
    長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
    學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
    五、教法特點。
    新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可。基于此,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    六、教學過程分析。
    1、課件展示本節(jié)課學習目標。
    設計意圖:明確任務,激發(fā)興趣。
    2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))。
    設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
    3、預習后心得交流。
    1)同底對數(shù)比大小。
    2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
    設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
    4、合作探究——同真異底型的對數(shù)比大小。
    以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
    設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
    5、小結。
    6、思考題。
    以20__高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
    7、作業(yè)。
    包括兩個方面:
    1、書寫作業(yè)。
    2、下節(jié)課前的預習作業(yè)。
    通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
    高一數(shù)學的教案篇十五
    1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
    2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
    二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
    難點:識別三視圖所表示的空間幾何體。
    三、學法指導:觀察、動手實踐、討論、類比。
    四、教學過程。
    (一)創(chuàng)設情景,揭開課題。
    展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
    (二)講授新課。
    1、中心投影與平行投影:
    中心投影:光由一點向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
    長對正:正視圖與俯視圖的長相等,且相互對正;
    高平齊:正視圖與側視圖的高度相等,且相互對齊;
    寬相等:俯視圖與側視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習。
    課本p15練習1、2;p20習題1.2[a組]2。
    (四)歸納整理。
    請學生回顧發(fā)表如何作好空間幾何體的三視圖。
    (五)布置作業(yè)。
    課本p20習題1.2[a組]1。
    高一數(shù)學的教案篇十六
    1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)。
    2、掌握標準方程中的幾何意義。
    3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
    3、雙曲線的漸進線方程為、
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關系、
    例1根據(jù)以下條件,分別求出雙曲線的標準方程、
    (1)過點,離心率、
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
    例3(理)求離心率為,且過點的雙曲線標準方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
    高一數(shù)學的教案篇十七
    學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
    1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
    (1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
    (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
    (3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
    2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
    3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
    (1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的.計算等.
    (2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法——遞推公式法.
    (3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
    (4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系.
    (5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
    (6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
    上述提供的:數(shù)列希望能夠符合大家的實際需要!
    高一數(shù)學的教案篇十八
    各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學教科書(必修)《數(shù)學》第一章第五節(jié)“一元二次不等式解法”。
    下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
    一、教材分析。
    (一)教材的地位和作用。
    “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
    (二)教學內(nèi)容。
    本節(jié)內(nèi)容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數(shù)與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數(shù)與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。
    二、教學目標分析。
    根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:
    知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
    能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
    情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
    三、重難點分析。
    一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
    要把握這個重點。關鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
    四、教法與學法分析。
    教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
    (二)教法分析。
    本節(jié)課設計的指導思想是:現(xiàn)代認知心理學——建構主義學習理論。
    建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
    本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
    高一數(shù)學的教案篇十九
    2、掌握標準方程中的幾何意義。
    3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
    3、雙曲線的漸進線方程為、
    4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關系、
    練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
    例1根據(jù)以下條件,分別求出雙曲線的標準方程、
    (1)過點,離心率、
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
    例3(理)求離心率為,且過點的雙曲線標準方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
    將本文的word文檔下載到電腦,方便收藏和打印。
    高一數(shù)學的教案篇二十
    (3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;
    (4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;
    (5)會用真值表判斷相應的復合命題的真假;
    (6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.。
    重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.。
    1.新課導入。
    初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)。
    學生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學議論結果,答案是肯定的.)。
    教師提問:什么是命題?
    (學生進行回憶、思考.)。
    概念總結:對一件事情作出了判斷的語句叫做命題.。
    (教師肯定了同學的回答,并作板書.)。
    (教師利用投影片,和學生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    2.講授新課。
    (片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.。
    (2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.。
    命題可分為簡單命題和復合命題.。
    (4)命題的表示:用p,q,r,s,……來表示.。
    (教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)。
    對于給出“若p則q”形式的復合命題,應能找到條件p和結論q.。
    3.鞏固新課。
    (1)5;
    (2)0.5非整數(shù);
    (3)內(nèi)錯角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若ab=0,則a=0.。
    (讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)。