八年級數學勾股定理教案(實用17篇)

字號:

    一個好的教案應該具備條理清晰、邏輯嚴謹、具有可操作性等特點。教案的編寫應該注重教學過程的評價和反思,以不斷提高教學質量。精心設計的教案是教師成功開展教學活動的重要保證。
    八年級數學勾股定理教案篇一
    理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    【過程與方法】。
    通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
    【情感態(tài)度與價值觀】。
    通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    二、教學重難點。
    【重點】。
    【難點】。
    三、教學過程。
    (一)導入新課。
    復習回顧出勾股定理。
    師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數量關系。
    追問1:你能把勾股定理的題設與結論交換得到一個新的命題嗎?
    師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。
    (四)小結作業(yè)。
    作業(yè):總結一下判定一個三角形是直角三角形的方法。
    八年級數學勾股定理教案篇二
    一、教材分析:
    《正方形》這節(jié)課是九年義務教育人教版數學教材八年級下冊第十九章第二節(jié)的內容。縱觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
    (一)知識目標:
    1、要求學生掌握正方形的概念及性質;
    2、能正確運用正方形的性質進行簡單的計算、推理、論證;
    (二)能力目標:
    1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結等能力;
    2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
    (三)情感目標:
    1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;
    2、培養(yǎng)學生互相幫助、團結協作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
    二、學生分析:
    該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
    三、教法分析:
    針對本節(jié)課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。
    通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
    四、學法分析:
    本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
    五、教學程序:
    第一環(huán)節(jié):相關知識回顧。
    以提問的形式復習的平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。
    第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
    1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
    2、正方形的性質。
    定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質的學習,之后是進行例題講解。
    4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
    第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。
    5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
    八年級數學勾股定理教案篇三
    教學。
    目標(含重點、難點)及。
    設置依據教學目標。
    1、了解多面體、直棱柱的有關概念.2、會認直棱柱的側棱、側面、底面.。
    3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
    教學重點與難點。
    教學過程。
    內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設情景,引入新課。
    析:學生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學習小組為單位,拿出事先準備好的幾何體。
    學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學們再討論一下,能否把自己的語言轉化為數學語言。
    學生活動:分小組討論。
    說明:真正體現了“以生為本”。讓學生在主動探究中發(fā)現知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側棱互相平行且相等。
    4.學以至用。
    出示例題。(先請學生單獨考慮,再作講解)。
    析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現問題,解決問題的創(chuàng)造性思維習慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(學生練習)。
    完成“課內練習”
    三、小結回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
    合作交流后得到:重點直棱柱的有關概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設計。
    作業(yè)布置或設計作業(yè)本及課時特訓。
    八年級數學勾股定理教案篇四
    一、教學目的:
    1、掌握菱形概念,知道菱形與平行四邊形的關系;
    3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
    4、根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想;
    二、重點、難點。
    1、教學重點:菱形的性質1、2;
    2、教學難點:菱形的性質及菱形知識的綜合應用;
    三、例題的意圖分析。
    四、課堂引入。
    1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
    《18、2、2菱形》課時練習含答案;
    5、在同一平面內,用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
    a、矩形b、菱形c、正方形d、梯形。
    答案:b。
    知識點:等邊三角形的性質;菱形的判定。
    解析:
    分析:此題主要考查了等邊三角形的性質,菱形的定義、
    6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
    a、等腰梯形b、正方形c、矩形d、菱形。
    答案:d。
    知識點:等邊三角形的性質;菱形的判定。
    解析:
    分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
    《菱形的性質與判定》練習題。
    一選擇題:
    1、下列四邊形中不一定為菱形的是()。
    a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
    c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
    2、下列說法中正確的是()。
    a、四邊相等的四邊形是菱形。
    b、一組對邊相等,另一組對邊平行的四邊形是菱形。
    c、對角線互相垂直的四邊形是菱形。
    d、對角線互相平分的四邊形是菱形。
    3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
    a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。
    八年級數學勾股定理教案篇五
    一、學情分析:
    知識技能基礎:學生在小學已經學過分數的乘除法,掌握了分數的乘除法法則,在學習分式的乘除法法則時可通過與分數的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
    能力基礎:在過去的數學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
    二、教學目標:
    知識目標:1、分式的乘除運算法則。
    2、會進行簡單的分式的乘除法運算。
    能力目標:1、類比分數的乘除運算法則,探索分式的乘除運算法則。
    2、能解決一些與分式有關的簡單的實際問題。
    情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
    2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
    三、教學重點、難點。
    重點:分式乘除法的法則及應用。
    難點:分子、分母是多項式的分式的乘除法的運算。
    三、教學過程:
    第一環(huán)節(jié)復習舊知識。
    復習小學學的分數乘除法法則,
    活動目的:
    復習小學學過的分數的乘除法運算,為學習分式乘除法的法則做準備。
    第二環(huán)節(jié)引入新課。
    活動內容。
    你能總結分式乘除法的法則嗎?與同伴交流。
    分式的乘除法的法則:。
    兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
    兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
    活動目的:
    讓學生觀察運算,通過小組討論交流,并與分數的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
    第三環(huán)節(jié)知識運用。
    活動內容。
    例題1:。
    (1)(2)例題2。
    (1)(2)活動目的:
    通過例題講解,使學生會根據法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
    第四環(huán)節(jié)走進中考。
    (2012.漳州)第五環(huán)節(jié)課時小結。
    活動內容:
    1.分式的乘除法的法則。
    2.分式運算的結果通常要化成最簡分式或整式.
    3.學會類比的數學方法。
    第六環(huán)節(jié)當堂檢測。
    八年級數學勾股定理教案篇六
    今后的教學中:
    (1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發(fā)現問題,解決問題。
    (2)注重培養(yǎng)學生良好的學習習慣。
    (3)加強例題示范教學,培養(yǎng)學生解題書寫表達。
    (4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。
    (5)在數學教學過程中,課堂上系統(tǒng)地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。
    (6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂上多考慮、關照中下生,讓他們在數學課堂上聽得進,肯用手。
    (7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養(yǎng)學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環(huán)節(jié)。
    八年級數學勾股定理教案篇七
    可化為一元二次方程的分式方程的解法.。
    教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.。
    一、新課引入:
    1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
    2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
    3、產生增根的原因是什么?.。
    二、新課講解:
    八年級數學勾股定理教案篇八
    活動目標:
    1、認知目標:理解二等分的含義,學習二等分的方法。
    2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。
    3、能力目標:探索對不同圖形進行二等分。
    發(fā)散點:
    運用不同的等分線對圖形進行等分。
    活動準備:
    正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
    活動過程:
    (一)等分圖形。
    1、以情景引入。結合大班幼兒的年齡特點,創(chuàng)設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現生活的數學,更加易于幼兒的理解。
    (1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?BR>    (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
    (3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
    (4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
    (5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
    2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
    3、小結:
    (1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
    (2)師:“有幾種分的方法”(對角和對邊折)。
    (3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
    (4)師:“怎樣分才能一樣大呢?”
    (5)教師于幼兒共同總結:只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。
    (二)運用學具進一步探索。只用紙來等分,以現階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
    1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
    2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側的洞洞子每排數量是否相同等方法。
    3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
    4、小結:展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
    八年級數學勾股定理教案篇九
    如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
    說明:
    (2)定理中a,b,c及a2+b2=c2只是一種表現形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。
    (1)確定最大邊;
    (2)算出最大邊的平方與另兩邊的平方和;
    (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
    能夠構成直角三角形的三邊長的三個正整數稱為勾股數。
    由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。
    解決圓柱側面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
    有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
    八年級數學勾股定理教案篇十
    1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
    2、會求一組數據的極差.
    1、重點:會求一組數據的極差.
    2、難點:本節(jié)課內容較容易接受,不存在難點、
    從表中你能得到哪些信息?
    比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
    這是不是說,兩個時段的氣溫情況沒有什么差異呢?
    根據兩段時間的氣溫情況可繪成的折線圖、
    觀察一下,它們有區(qū)別嗎?說說你觀察得到的結果、
    本節(jié)課在教材中沒有相應的例題,教材p152習題分析。
    問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統(tǒng)計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。
    八年級數學勾股定理教案篇十一
    《正方形》這節(jié)課是九年義務教育人教版數學教材八年級下冊第十九章第二節(jié)的內容??v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
    (一)知識目標:
    1、要求學生掌握正方形的概念及性質;
    2、能正確運用正方形的性質進行簡單的計算、推理、論證;
    (二)能力目標:
    1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結等能力;
    2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
    (三)情感目標:
    1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;
    2、培養(yǎng)學生互相幫助、團結協作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
    該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
    針對本節(jié)課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。
    通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
    本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
    第一環(huán)節(jié):相關知識回顧。
    以提問的形式復習平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。
    第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
    1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
    2、正方形的性質定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質的學習,之后是進行例題講解。
    4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
    第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。
    5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
    八年級數學勾股定理教案篇十二
    一、本節(jié)課的成功之處:。
    本節(jié)課以活動為主線,通過從估算到實驗活動結果的產生讓學生總結過程,最后回到解決生活中實際問題,思路清晰,脈絡明了。
    例如:活動1問題:據說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結,然后以3個結,4個結、5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
    這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關系“32+42=52”.那么圍成的三角形是直角三角形.
    2、體現了“數學源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學生觀察,思路讓學生探索,方法讓學生思考意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路。例如:命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形.
    如下圖,欲過基線mn上的一點c作它的垂線,可由三名工人操作:一人手拿布尺或測繩的0和12尺處,固定在c點;另一人拿4尺處,把尺拉直,在mn上定出a點,再由一人拿9尺處,把尺拉直,定出b點,于是連結bc,就是mn的垂線.
    建筑工人用了3,4,5作出了一個直角,能不能用其他的整數組作出直角呢?
    生:可以,例如7,24,25;8,15,17等.
    3、在本節(jié)教學活動過程中,我經常走下講臺,到學生中去,以學生身份和學生一起探討問題。用一切可能的方式,激勵回答問題的學生,激發(fā)學生的求知欲,使師生在和諧的教學環(huán)境中零距離的接觸。課堂上學生們的思維空前活躍,發(fā)言的人數不斷增多,學生能從多角度認識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。這是本節(jié)課的特色。
    二、本節(jié)課的不足之處及改進方法:。
    1、本節(jié)課我沒有利用多媒體輔助教學,如學習目標的發(fā)展、習題訓練內容的展示、學生活動的要求、作業(yè)布置等,這些內容都是為教學服務的。如果用多媒體課件的展示,可以增大了教學密度,使學生的雙基訓練得到了加強,使傳統(tǒng)的課堂走向了開放,使學生真正感受到學習方式在發(fā)生變化。在以后的教學中我應加強。
    八年級數學勾股定理教案篇十三
    學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
    去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、
    解分式方程的一般步驟。
    1、什么叫分式方程?
    2、解分式方程的基本思想:
    分式方程整式方程。
    3、解方程(學生板演)。
    1、由上述學生的板演歸納出解分式方程的一般步驟。
    (1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
    (2)解這個整式方程;
    2、范例講解。
    (學生嘗試練習后,教師講評)。
    例1:解方程例2:解方程例3:解方程講評時強調:
    1、怎樣確定最簡公分母?(先將各分母因式分解)。
    2、解分式方程的步驟、
    鞏固練習:p1471t,2t、
    課堂小結:解分式方程的一般步驟。
    布置作業(yè):見作業(yè)本。
    八年級數學勾股定理教案篇十四
    本節(jié)內容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
    本節(jié)內容的難點是定理及逆定理的關系.垂直平分線定理和其逆定理,題設與結論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
    本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
    學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結.最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現,激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯系.
    八年級數學勾股定理教案篇十五
    教學目標:
    1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
    2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
    3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。
    重點與難點:
    重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
    難點:分析典型圖案的設計意圖。
    疑點:在設計的圖案中清晰地表現自己的設計意圖。
    教具學具準備:
    提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
    教學過程設計:
    1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)。
    明確在欣賞了圖案后,簡單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
    2、課本。
    1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
    評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
    評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
    (二)課內練習。
    (1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
    (2)利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
    (三)議一議。
    生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
    (四)課時小結。
    本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
    通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)。
    進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
    八年級數學勾股定理教案篇十六
    《基礎教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術在教學過程中的普遍應用,促進信息技術與學科課程的整合,逐步實現教學內容的呈現方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具。”教師運用現代多媒體信息技術對教學活動進行創(chuàng)造性設計,發(fā)揮計算機輔助教學的特有功能,把信息技術和數學教學的學科特點結合起來,可以使教學的表現形式更加形象化、多樣化、視覺化,有利于充分揭示數學概念的形成與發(fā)展,數學思維的過程和實質,展示數學思維的形成過程,使數學課堂教學收到事半功倍的效果。
    本節(jié)課內容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎上進行的,在知識結構上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質。運用多媒體教學體現出直觀、課容量大、容易接受的特點,為進一步的理論證明及應用起著提供數據和宏觀指導作用,使學生學習本章具體內容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內容是四邊形這章的理論基礎,在該章占有非常重要的地位。
    本班經歷了一年多課改實踐,學生對運用現代多媒體信息技術的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現、歸納、經歷數學知識于實踐的過程。
    本節(jié)課充分利用現有的先進教學設備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經驗出發(fā),讓學生親身經歷數學知識的形成并進行解釋與應用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數據,并總結其性質,通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
    1、初步理解特殊四邊形性質;
    2、培養(yǎng)學生自主收集、描述和分析數據的能力;
    1、了解特殊四邊形性質的形成過程;
    2、初步了解探究新知識的一些方法;
    1、了解特殊四邊形在日常生活中的應用;
    2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;
    3、初步具有感性認識上升到理性認識的辯證唯物主義思想。
    教學環(huán)境:
    多媒體計算機網絡教室。
    教學課型:
    試驗探究式。
    教學重點:
    特殊四邊形性質。
    教學難點:
    特殊四邊形性質的發(fā)現。
    一、設置情景,提出問題。
    提出問題:
    1、電動門的網格和結點能組成哪些四邊形?
    2、在開(關)門過程中這些四邊形是如何變化的?
    3、你還發(fā)現了什么?
    解決問題:
    學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
    當我們學習完本節(jié)知識后,其他問題就容易解決了。
    (意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。
    二、整體了解,形成系統(tǒng)。
    本節(jié)課從整體角度研究特殊四邊形性質,為今后的個體研究打下良好的基礎。我們先研究四邊形中的特殊與一般的關系。
    提出問題:
    1、本章主要研究哪些特殊四邊形?
    2、從哪幾方面研究這些特殊四邊形?
    解決問題:
    學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。
    1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
    3、等腰梯形和直角梯形后面應該是矩形,但不符合梯形定義,所以沒有圖形。
    (意圖:學生自主觀察、分組討論了解本章知識結構,從而形成系統(tǒng);通過假設、猜想、推理、論證、否定假設獲得新知識)。
    三、個體研究、總結性質。
    1、平行四邊形性質。
    提出問題:
    在平行四邊形的形狀、位置、大小變化過程中,請觀察數據并找出邊長、角度、對角線長度相對不變的性質。
    解決問題:
    教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數據的變化,從中找出相對不變的要素。
    在圖形變化過程中,
    (1)對邊相等;
    (2)對角相等;
    (3)通過ao=co、bo=do,可得對角線互相平分;
    (4)通過鄰角互補,可得對邊平行;
    (5)內外角和都等于360度;
    (6)鄰角互補;
    ……。
    指導學生填表:
    平行四邊形性質矩形性質正方形性質。
    菱形性質。
    梯形性質等腰梯形性質。
    直角梯形性質。
    (既屬于平行四邊形性質又屬于矩形性質可以畫箭頭)。
    按照平行四邊形性質的探索思路,分別研究:
    2、矩形性質;
    3、菱形性質;
    4、正方形性質;
    5、梯形性質;
    6、等腰梯形性質;
    7、直角梯形的性質。
    (意圖:學生運用電腦自主收集、描述、分析數據,把抽象的性質變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。
    教師總結:
    (意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質,又有自己的特點。既清楚地表達,又節(jié)省時間。)。
    四、聯系生活,解決問題。
    解決問題:
    學生操作電腦,觀察圖形、分組討論,教師個別指導。
    學生在分別演示開(關)門過程中,觀察數據并總結:邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
    四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
    (意圖:使學生體會到數學于生活、又服務于生活,更重要的是培養(yǎng)學生應用知識解決實際問題的能力,體會成功后的喜悅。)。
    五、小結。
    1.研究問題從整體到局部的方法;
    2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質。
    六、作業(yè)。
    1.平行四邊形內角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
    2.觀察實際生活中的電動門,在開(關)門過程中特殊四邊形的變化。
    針對教學內容、學生特點及設計方案,預計下列學習效果:
    利用多媒體信息技術圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數據并總結其性質,培養(yǎng)學生收集、描述和分析數據的能力,并達到初步理解特殊四邊形性質的目標。
    在問題引入、了解整體、測量個體、總結性質的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。
    由于個體差異,針對教學目標難以達到的個別學生,根據教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現。
    八年級數學勾股定理教案篇十七
    3、情感態(tài)度與價值觀:通過剪紙等活動,培養(yǎng)學生的實驗意識和探索精神,使學生進一步認識到數學與現實生活的密切聯系,感受數學的嚴謹性以及結果的確定性。
    三、教學重、難點。
    1、重點:等腰三角形的性質。
    2、難點:“等邊對等角”的證明。
    四、教學方法。
    動手體驗、小組、討論、合作、交流、探究驗證師生互動。
    五、教、學具。
    1、教具:長方形紙,剪刀,幻燈片。
    2、學具:長方形紙,剪刀。