最新勾股定理獲獎?wù)f課稿(通用23篇)

字號:

    學(xué)會管理情緒是保持心理健康和積極心態(tài)的關(guān)鍵,良好的情緒管理能力有助于提高生活質(zhì)量。在寫總結(jié)時,我們需要有客觀的態(tài)度,客觀地總結(jié)自己的表現(xiàn)和不足。這是小編為大家整理的總結(jié)范文,供大家借鑒。
    勾股定理獲獎?wù)f課稿篇一
    尊敬的各位評委、老師,大家好!
    我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
    如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應(yīng)用。
    勾股定理的發(fā)現(xiàn)、驗證和應(yīng)用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
    新課標下的數(shù)學(xué)教學(xué)不僅是知識的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學(xué)目標如下:
    1、探索并利用拼圖證明勾股定理。
    2、利用勾股定理解決簡單的數(shù)學(xué)問題。
    3、感受數(shù)學(xué)文化,體會解決問題方法的多樣性和數(shù)形結(jié)合的思想。
    本著課標的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點、難點、關(guān)鍵如下:
    勾股定理的證明和簡單應(yīng)用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。
    為了講清重點、突破難點、抓住關(guān)鍵,使學(xué)生達到預(yù)定目標,我對教法和學(xué)法分析如下:
    新課程標準強調(diào)要從學(xué)生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點和初二學(xué)生的認知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動手操作、講解為中心,讓學(xué)生親歷親為,體會做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅實的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動的時間,以導(dǎo)學(xué)案的形式、運用多媒體輔助教學(xué)。
    學(xué)法是學(xué)生再生知識的法寶,為了把學(xué)生學(xué)習(xí)過程當作認知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨立思考,點撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點,指導(dǎo)學(xué)生嚴謹、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達能力。
    為了充分調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進的設(shè)計教學(xué)流程。
    1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。
    2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。
    3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個性補充和老師適當?shù)膫€性化追加的形式實現(xiàn)對定理的靈活應(yīng)用。
    4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
    為了給學(xué)生營造一個和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標準的基本理念和總體目標為指導(dǎo)思想,面向全體學(xué)生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學(xué)生都能積極的參與進來,培養(yǎng)學(xué)生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
    教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個性補充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。
    以學(xué)生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時間;同時,我注重對學(xué)生進行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時由“勾股樹”到“智慧樹”的希望寄語。
    勾股定理獲獎?wù)f課稿篇二
    一、教材分析:。
    (一)、本節(jié)課在教材中的地位作用。
    “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學(xué)生必須掌握。
    (二)、教學(xué)目標:根據(jù)數(shù)學(xué)課標的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標。知識技能:
    1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
    2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    過程與方法:
    1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。
    2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。
    3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。
    情感態(tài)度:
    1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
    2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    (三)、學(xué)情分析:
    盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。
    關(guān)鍵:輔助線的添法探索。
    二、教學(xué)過程:
    本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認識結(jié)構(gòu)的目的。
    (一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
    (二)、創(chuàng)設(shè)問題情境。
    一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。
    (三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)。
    因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
    這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
    接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
    在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
    (四)、組織變式訓(xùn)練。
    本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
    (五)、歸納小結(jié),納入知識體系。
    本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。
    (六)、作業(yè)布置。
    由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
    三、說教法、學(xué)法與教學(xué)手段。
    為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認識上升到理性認識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。
    此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。
    總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
    勾股定理獲獎?wù)f課稿篇三
    各位考官,大家好,我是x號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
    教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
    一、說教材。
    “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。
    二、說學(xué)情。
    中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。
    三、說教學(xué)目標。
    根據(jù)數(shù)學(xué)課標的要求和教材的具體內(nèi)容結(jié)合學(xué)生實際我確定了如下教學(xué)目標。
    勾股定理獲獎?wù)f課稿篇四
    一、教材分析。
    (一)教材所處的地位。
    這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
    (二)根據(jù)課程標準,本課的教學(xué)目標是:
    2、會初步運用勾股定理進行簡單的計算和實際運用。
    3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察―猜想―歸納―驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
    4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
    (三)本課的教學(xué)重點:探索勾股定理。
    本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。
    二、教法與學(xué)法分析:
    教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題―實驗操作―歸納驗證―問題解決―課堂小結(jié)―布置作業(yè)六部分。
    學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
    三、教學(xué)過程設(shè)計。
    (一)提出問題:
    首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
    (二)實驗操作:
    1、投影課本圖1―1,圖1―2的有關(guān)直角三角形問題,讓學(xué)生計算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。
    2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1―3,圖1―4,同樣讓學(xué)生計算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
    3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
    (三)歸納驗證:
    1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
    2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育。
    (四)問題解決:
    讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
    勾股定理獲獎?wù)f課稿篇五
    (一)教材所處的地位。
    這節(jié)課是華師大九年制義務(wù)教育課程標準實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
    (二)根據(jù)課程標準,本課的教學(xué)目標是:
    2、會初步運用勾股定理進行簡單的計算和實際運用。
    3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
    4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
    (三)本課的教學(xué)重點:探索勾股定理。
    本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。
    教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
    學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
    以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
    1、投影課本圖的有關(guān)直角三角形問題,讓學(xué)生計算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。
    2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
    3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
    1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
    2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結(jié)論的正確性和廣泛性。這一過程有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育和數(shù)學(xué)文化熏陶。
    讓學(xué)生解決生活中的實際問題,學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
    主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。
    習(xí)題19.2(1-5)。
    有興趣的同學(xué)可以查找另外的證明方法,寫出1-2種出來。
    1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
    2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的探索和研究,得出結(jié)論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
    4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識是有很大的裨益的。
    勾股定理獲獎?wù)f課稿篇六
    這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
    (二)教學(xué)目標。
    知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
    過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。
    情感態(tài)度與價值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
    (三)教學(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
    教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
    突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
    二、教法與學(xué)法分析:
    教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
    學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
    三、教學(xué)過程設(shè)計。
    略
    勾股定理獲獎?wù)f課稿篇七
    本節(jié)內(nèi)容選自人教版八年級數(shù)學(xué)下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法來證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆。
    (二)教學(xué)目標。
    根據(jù)數(shù)學(xué)課標的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標。
    知識技能:
    理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
    掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。
    過程方法:
    1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。
    2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用。
    3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。
    情感態(tài)度:
    (三)學(xué)情分析。
    數(shù)學(xué)課程不僅注重知識、技能,以及情感意識和創(chuàng)造力的培養(yǎng),同樣注重社會實踐和體驗,教學(xué)要遵循以教師為主導(dǎo),學(xué)生為主體的原則,因此我采用的教法學(xué)法如下:
    在教學(xué)中以小組合作,自主探索為形式,采用“提問引導(dǎo)法”,通過“提出疑問”來啟發(fā)誘導(dǎo)學(xué)生,讓學(xué)生自覺主動地去分析問題、解決問題,學(xué)生在操作過程中不斷“發(fā)現(xiàn)問題——解決問題”,變學(xué)生“學(xué)會”為“會學(xué)”.這樣不僅使學(xué)生學(xué)習(xí)目標明確,而且能夠培養(yǎng)他們的合作精神和自主學(xué)習(xí)的能力。根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學(xué)習(xí)法,通過設(shè)計一系列問題,引導(dǎo)學(xué)生主動探究新知,體現(xiàn)學(xué)習(xí)自主性,從不同層面發(fā)掘不同學(xué)生的不同能力。
    1、多媒體教學(xué)課件。
    2、紙片、直尺、圓規(guī)等。
    3、對學(xué)生事先分組。
    根據(jù)本課教學(xué)內(nèi)容以及數(shù)學(xué)課程學(xué)科特點,結(jié)合八年級學(xué)生的實際認知水平,我設(shè)計了如下六個教學(xué)環(huán)節(jié):
    (一)復(fù)習(xí)提問、引入新課。
    問題1:前面我們學(xué)習(xí)了勾股定理,你能說出它的題設(shè)和結(jié)論嗎?
    問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?
    (二)動手操作、觀察猜想。
    探究一:分組做實驗。
    第一組同學(xué)每人畫一個邊長為3cm、4cm、5cm的三角形;
    第二組同學(xué)每人畫一個邊長為2.5cm、6cm、7.5cm的三角形;
    第三組同學(xué)每人畫一個邊長為4cm、7.5cm、8.5cm的三角形;
    第四組同學(xué)每人畫一個邊長為2cm、5cm、6cm的三角形。
    問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證。
    問題2:前三個三角形三邊具有怎樣的關(guān)系呢?
    學(xué)生活動:動手、觀察、測量、思考、猜想。
    設(shè)計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法,又體驗了數(shù)與形的內(nèi)在聯(lián)系。
    (三)實踐驗證,歸納證明。
    教師出示問題。
    問題1:對于一個真命題,它的逆命題是否也為真?學(xué)生舉例說明。
    勾股定理的逆命題是否也正確?怎么證明?
    問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)。
    問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?
    學(xué)生活動:觀察思考,動手操作,分組討論,交流合作(教師引導(dǎo)學(xué)生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)。
    設(shè)計意圖:把“構(gòu)造直角三角形”這一方法的獲取過程交給學(xué)生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。
    勾股定理獲獎?wù)f課稿篇八
    尊敬的各位考官:
    大家好,我是x號考生,今天我說課的題目是《勾股定理的逆定理》。
    新課標指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
    首先來談一談我對教材的理解。
    本節(jié)課選自人教版初中數(shù)學(xué)八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識。
    接下來談?wù)剬W(xué)生的實際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識,處于由幾何內(nèi)容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵與引導(dǎo)并重。
    根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下教學(xué)目標:
    (一)知識與技能。
    理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
    (二)過程與方法。
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    (三)情感、態(tài)度與價值觀。
    體會事物之間的聯(lián)系,感受幾何的魅力。
    在教學(xué)目標的實現(xiàn)過程中,教學(xué)重點是勾股定理的逆定理及其證明,教學(xué)難點是勾股定理的逆定理的證明。
    為了突破重點,解決難點,順利達成教學(xué)目標,教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
    下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
    (一)導(dǎo)入新課。
    課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時我會要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
    通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。
    (二)講解新知。
    接下來是最重要的新授環(huán)節(jié)。
    請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確。
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。
    勾股定理獲獎?wù)f課稿篇九
    這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
    (二)教學(xué)目標。
    知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
    過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。
    情感態(tài)度與價值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
    (三)教學(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
    教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
    突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
    二、教法與學(xué)法分析:
    教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
    勾股定理獲獎?wù)f課稿篇十
    勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一。它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一。在實際生活中用途很大,教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,讓學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
    據(jù)此,制定教學(xué)目標如下:
    2、能夠靈活地運用勾股定理及其計算。
    3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
    4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
    教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
    1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用;運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
    2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理。提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
    3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
    本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
    (一)創(chuàng)設(shè)情境以古引新。
    1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
    2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
    3、板書課題,出示學(xué)習(xí)目標。
    (二)初步感知理解教材。
    教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
    (三)質(zhì)疑解難討論歸納。
    1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
    2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
    (1)這兩個圖形有什么特點?
    (2)你能寫出這兩個圖形的面積嗎?
    (3)如何運用勾股定理?是否還有其他形式?
    這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
    (四)鞏固練習(xí)強化提高。
    1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
    2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
    (五)歸納總結(jié)練習(xí)反饋。
    引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
    本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
    勾股定理獲獎?wù)f課稿篇十一
    一、教材分析:。
    (一)、本節(jié)課在教材中的地位作用。
    “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學(xué)生必須掌握。
    (二)、教學(xué)目標:根據(jù)數(shù)學(xué)課標的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標。知識技能:
    1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
    2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    過程與方法:
    1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。
    2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。
    3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。
    情感態(tài)度:
    1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
    2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    (三)、學(xué)情分析:
    盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。
    關(guān)鍵:輔助線的添法探索。
    二、教學(xué)過程:
    本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認識結(jié)構(gòu)的目的。
    (一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
    (二)、創(chuàng)設(shè)問題情境。
    一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。
    (三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)。
    因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
    這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
    接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
    在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
    (四)、組織變式訓(xùn)練。
    本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
    (五)、歸納小結(jié),納入知識體系。
    本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。
    (六)、作業(yè)布置。
    由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
    三、說教法、學(xué)法與教學(xué)手段。
    為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認識上升到理性認識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。
    此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。
    總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
    將本文的word文檔下載到電腦,方便收藏和打印。
    勾股定理獲獎?wù)f課稿篇十二
    一、勾股定理是我國古數(shù)學(xué)的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實際生活的各個方面.教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應(yīng)用.據(jù)此,制定教學(xué)目標如下:。
    1.知識和方法目標:通過對一些典型題目的思考,練習(xí),能正確熟練地進行勾股定理有關(guān)計算,深入對勾股定理的理解.2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.
    3.情感與態(tài)度目標:感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
    教學(xué)重點:勾股定理的應(yīng)用.教學(xué)難點:勾股定理的正確使用.
    教學(xué)關(guān)鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
    二.說教法和學(xué)法。
    1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程.
    2.切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力.
    3.通過演示實物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
    三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:回顧問:勾股定理的內(nèi)容是什么?勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個定理在實際生活中的應(yīng)用.
    勾股定理獲獎?wù)f課稿篇十三
    “勾股定理”是幾何中極其重要的一個定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將形與數(shù)密切地聯(lián)系起來。它可以解決許多直角三角形的計算問題。北師大版數(shù)學(xué)教材八年級上冊的第一單元,就是探索、應(yīng)用勾股定理。而何老師根據(jù)所任教班級的實際情況,對教材進行了精心編排,在課堂上真正實現(xiàn)了以生為本,達到了夯實基礎(chǔ)的良好效果。主要有以下幾個亮點:
    在上課伊始,何老師向?qū)W生明確了本節(jié)課的學(xué)習(xí)目標,為了引起學(xué)生的高度注意,還指名學(xué)生大聲朗讀了學(xué)習(xí)目標,迅速實現(xiàn)了由課間向課堂的有效過渡。接著何老師設(shè)計了“蝸牛走了多遠”、“小鳥飛行”“輪船航?!比齻€情境,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也讓學(xué)生大致了解了本節(jié)課所學(xué)的知識能解決哪類生活中的問題。
    在接下來的探索勾股定理的環(huán)節(jié)里,何老師注重知識的形成過程,放手讓學(xué)生討論、研究,層層遞進,依次得出了等腰直角三角形三邊之間的關(guān)系及一般直角三角形三邊的關(guān)系,讓學(xué)生親身體驗由“特殊”到“一般”的過程,由此得出勾股定理。在學(xué)案設(shè)計中,何老師首先引導(dǎo)學(xué)生得出三個正方形p、q、r的面積,然后讓學(xué)生發(fā)現(xiàn)這三個正方形面積之間的關(guān)系,繼而引導(dǎo)學(xué)生將三個正方形面積分別表示成直角三角形中各邊的平方,得出直角三角形三邊平方之間的關(guān)系,并要求學(xué)生用文字表達,進一步加深對勾股定理的印象,這樣的設(shè)計非常適合我們學(xué)校學(xué)生的.學(xué)情,很好地突破了難點。在讓學(xué)生展示計算正方形面積方法時,巧妙地利用了我們先進的教學(xué)媒體,直觀形象,學(xué)生一看就懂。
    勾股定理能解決生活中許多與直角三角形有關(guān)的問題,何老師通過解決情境引入中的三個問題,引導(dǎo)學(xué)生學(xué)會發(fā)現(xiàn)、構(gòu)建直角三角形,從而利用勾股定理解決實際問題,讓學(xué)生再次經(jīng)歷從“一般”到“特殊”的過程。同時也構(gòu)筑了利用勾股定理解題的數(shù)學(xué)模型。首尾呼應(yīng),恰到好處。
    在得出勾股定理之后,何老師讓學(xué)生思考:“勾代表什么?股代表什么?”;在認識了幾組勾股數(shù)之后,何老師引導(dǎo)學(xué)生自己創(chuàng)造勾股數(shù);在講解題目時,強調(diào)解題格式;在發(fā)現(xiàn)有學(xué)生對a、b、c代表什么有疑問時,立刻進行講解梳理,解答學(xué)生的誘惑。從這些都可以看出何老師是很關(guān)注細節(jié),注重培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣的。
    總之,整堂課體現(xiàn)了教師良好的專業(yè)素養(yǎng),思路清晰,目標明確,過程流暢。是一堂值得我學(xué)習(xí)的好課!
    聽了何老師的勾股定理,感觸比較多。整節(jié)課,可以說是化繁為簡、重點突出、條理清晰、層次分明。
    讓我印象最深刻,也是值得我學(xué)習(xí)的地方,應(yīng)該是利用正方形的面積來推導(dǎo)勾股定理這一部分,這也是本節(jié)課的難點與重點。從找正方形面積之間的關(guān)系,來推導(dǎo)出中間所圍的三角形三邊之間的關(guān)系,無疑是一個很巧妙的思維,在網(wǎng)格中找正方形面積的時候,學(xué)生可以充分利用所學(xué)過的割補法的知識,用不同的方法,得到面積,思維上得到了發(fā)散。接下來利用了一個有效的設(shè)問“對于等腰直角三角形三邊所滿足的這一關(guān)系,是否一般的直角三角形也滿足呢?聚攏了發(fā)散的思維,并明確了勾股定理。整個過程條理清晰、層次分明,學(xué)生在一步一步的探索中學(xué)到了新的知識。符合學(xué)生的認知水平。
    練習(xí)分為兩部分,第一部分是:蝸牛的行走路徑、小鳥飛行路程、輪船航行。這一部分在課程開始時,以動畫的形式吸引學(xué)生的注意,并設(shè)置了求解的疑問,在勾股定理明確之后,讓學(xué)生做、學(xué)生講解、老師點撥。從中加深學(xué)生對勾股定理的印象:一是一定要在直角三角形中使用,如果沒有直角三角形,則首先要構(gòu)造出直角三角形。二是,得到了三組勾股數(shù),為勾股數(shù)的規(guī)律做鋪墊。第二部分的練習(xí)是給學(xué)生們課下練習(xí)的。
    整個課堂中,教師的教學(xué)功底通過對課堂節(jié)奏的掌控、教師用語的提煉、ppt技巧的掌握得到了充分的展現(xiàn)。很值得我學(xué)習(xí)!
    勾股定理獲獎?wù)f課稿篇十四
    初略統(tǒng)計,何老師在課堂上,共提出以下8個問題:
    (1)在一般的直角三角形中,有這樣的結(jié)論成立嗎?
    (3)使用勾股定理,需要弄清楚什么?
    (4)為什么用減法?(在勾股定理的簡單應(yīng)用這一環(huán)節(jié),用到。
    (5)我們是否應(yīng)該在這個表格中創(chuàng)造直角三角形呢?(引導(dǎo)學(xué)。
    (6)那你還能創(chuàng)造出其它勾股數(shù)嗎?
    (7)怎么理解東南方向、東北方向?
    (8)勾股定理,難道只是為了求斜邊嗎?(在本課小結(jié)環(huán)節(jié))。
    以上八個問題環(huán)環(huán)緊扣,出現(xiàn)的時機恰到好處。比如,在應(yīng)用勾股定理時,沒有現(xiàn)成的直角三角形,學(xué)生無從下手。何老師,不失時機地問了一句:是否應(yīng)該構(gòu)造一個直角三角形呢?這樣一個問題,既非常好地點撥了學(xué)生,又讓學(xué)生深刻地領(lǐng)悟到了勾股定理的使用是有條件的。
    發(fā)現(xiàn)定理到證明定理,再到應(yīng)用定理,板塊分明,學(xué)生聽的真切。思路清晰,三個情景:蝸牛爬行、小鳥飛行、輪船航海,貫穿整個課堂,從三個情景里模糊感知定理,從三個情景里充分應(yīng)用定理,并擴充延展定理。
    蝸牛爬行涉及到直角三角形的構(gòu)造,回答了第2個問題;小鳥飛行涉及到勾和股的確定,回答了第3個問題;輪船航海涉及到直角三角形的尋找。
    如果我是一名學(xué)生,很愿意跟著何老師學(xué)習(xí)。他有種讓學(xué)生很安心很靜心的能力,讓學(xué)生有踏實感,覺得跟著這位老師學(xué)習(xí)一定能學(xué)到東西。
    勾股定理獲獎?wù)f課稿篇十五
    (一)教材所處的地位。
    這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
    (二)根據(jù)課程標準,本課的教學(xué)目標是:
    2、會初步運用勾股定理進行簡單的計算和實際運用。
    3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
    4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
    (三)本課的教學(xué)重點:探索勾股定理。
    本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。
    教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
    學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
    (一)提出問題:
    首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。
    (二)實驗操作:
    1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將c劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。
    2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。
    3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。
    (三)歸納驗證:
    1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。
    2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育。
    (四)問題解決:
    讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。
    (五)課堂小結(jié):
    主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。
    (六)布置作業(yè):
    課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。
    1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
    2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。
    3、關(guān)于練習(xí)的設(shè)計,除兩個實際問題和課本習(xí)題以外,我準備設(shè)計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
    4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進的。
    勾股定理獲獎?wù)f課稿篇十六
    今天我說課的題目是《勾股定理的逆定理》。
    新課標指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
    首先來談一談我對教材的理解。
    本節(jié)課選自人教版初中數(shù)學(xué)八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識。
    接下來談?wù)剬W(xué)生的實際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識,處于由幾何內(nèi)容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵與引導(dǎo)并重。
    根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下教學(xué)目標:
    (一)知識與技能。
    理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
    (二)過程與方法。
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    (三)情感、態(tài)度與價值觀。
    體會事物之間的聯(lián)系,感受幾何的魅力。
    在教學(xué)目標的實現(xiàn)過程中,教學(xué)重點是勾股定理的逆定理及其證明,教學(xué)難點是勾股定理的逆定理的證明。
    為了突破重點,解決難點,順利達成教學(xué)目標,教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
    下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
    (一)導(dǎo)入新課。
    課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時我會要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。
    通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。
    (二)講解新知。
    接下來是最重要的新授環(huán)節(jié)。
    請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確。
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
    在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。
    勾股定理獲獎?wù)f課稿篇十七
    亮點一:學(xué)案設(shè)計簡潔,到位,有梯度。簡潔體現(xiàn)在整張學(xué)案圍繞勾股定理,分為探索和應(yīng)用部分,沒有旁枝末節(jié),沒有虛張聲勢,直指核心。到位體現(xiàn)在,把握了大綱的要求,讓學(xué)生新身經(jīng)歷探索的過程,并能靈活運用。有梯度體現(xiàn)在練習(xí)題的設(shè)計上。習(xí)題有梯度,有層次。
    亮點二:語言簡煉,重點突出。非重點處,惜時如金,重點處,濃墨重彩。如,探索一般直角三角形部分,最大的正方形的面積是25,一般的學(xué)生不知道怎么數(shù)?在這個環(huán)節(jié),舍得花時間,讓學(xué)生操作,用割和補這2種方法去求。小環(huán)節(jié)的處理可體現(xiàn)教師的智慧。
    亮點三:教師功底扎實,能站在高處,指導(dǎo)學(xué)生學(xué)習(xí),發(fā)散。發(fā)散必須在我們每個老師的心中。我一直有個觀點,數(shù)學(xué)最重要的是思維訓(xùn)練,思維訓(xùn)練中最核心的是發(fā)散,是舉一反三,觸類旁通。有這幾處細節(jié),讓我記憶深刻。如第三組勾股數(shù)6、8、10,教師問:它和3、4、5相比分別是3、4、5的幾倍?那你能不能創(chuàng)造一組勾股數(shù)?我相信好的學(xué)生能迅速領(lǐng)會。習(xí)題中也能凸顯發(fā)散。求一條斜邊的是基礎(chǔ)題,求三條斜邊的和,我認為這個發(fā)散練習(xí)設(shè)計得好,有利于拓寬學(xué)生視野。
    接下來,我想就在觀課中發(fā)現(xiàn)的一個問題,和大家一起探討:
    原因有二:1、思維定勢。三邊的關(guān)系,首先會想到相等,但一看,不相等,不知所措。2、第1個問題和第2個問題之間,學(xué)生看不出聯(lián)系。不會把正方形的面積轉(zhuǎn)化為邊的平方。何老師的學(xué)案設(shè)計本身沒有任何問題,如果面對的是重點班的學(xué)生,會很流暢很順暢。但面對我們這里的學(xué)生,呈現(xiàn)出一種理想很美好,但現(xiàn)實很骨感的狀態(tài):絕大部分學(xué)生這幾分鐘都在絞盡腦汁想這一題,后面的題目沒有去完成。也就是說,其實探索環(huán)節(jié)實效性不高。那針對學(xué)情,學(xué)案該怎樣設(shè)計?我建議:凸顯正方形的面積和邊長之間的關(guān)系。
    (1)正方形p的面積=(1)=(ac)。
    正方形q的面積=()=();
    正方形r的面積=()=()。
    (2)直角三角形面積之間的關(guān)系是:,這個關(guān)系也可表示為()+()=()。
    (3)觀察思考上面的式子,你能發(fā)現(xiàn)直角三角形三邊之間的關(guān)系嗎?請寫下來。
    所以,這是我的第一個建議:部分設(shè)計要調(diào)低難度,搭設(shè)橋梁。要針對學(xué)情。
    建議二:解題過程的書寫教學(xué)重視得不夠。我觀察有部分好的學(xué)生會做,但都直接寫在圖上,解題過程不知怎么下筆。解題過程的書寫直接影響中考成績,所以我建議從初一年級起,要手把手教,要帶著學(xué)生寫解題過程。并且嚴格要求,每天的學(xué)案收上來,檢查,督促學(xué)生寫好。不積細流,無以成江河。
    建議三:小細節(jié)的處理上,還可以再精益求精。3個練習(xí)題,我感覺第1題要構(gòu)造三個直角三角形,求三段斜邊的和,難度比2、3題要大一些,如調(diào)整一下順序,把第1題放在第3題的位置,可能層次性會更突出。板書方面,建議:勾股定理一定要板書在黑板上。學(xué)生用割的方法分那個面積是25的三角形時,由于三角形的底色紅色太突出,顯眼。導(dǎo)致分割線不明顯,影響學(xué)生的理解掌握。
    總之,我認為這堂課設(shè)計凸顯智慧,教師在隨意中透著嚴謹,在細節(jié)中彰顯功底,是一節(jié)值得肯定、值得我學(xué)習(xí)、借鑒的好課。感謝何老師。
    勾股定理獲獎?wù)f課稿篇十八
    由于目前一直在小學(xué)部任教,很少聽中學(xué)的課了,所以對中學(xué)的課堂模式由熟悉轉(zhuǎn)為了陌生。下面將自己的一些觀點和各位分享一下:
    首先,何老師是位非常有經(jīng)驗的教師,從他這節(jié)課中,我對初中課堂有了進一步的了解,也學(xué)習(xí)到了許多。
    這節(jié)課給我最大的感受就是順,這個順包含幾個方面:
    第一,這節(jié)課按照學(xué)案的設(shè)計結(jié)構(gòu)很順利的講下來了,一個環(huán)節(jié)連著一個環(huán)節(jié),很順利,沒有遇到太多的問題。首先從3個問題導(dǎo)入,明確了“學(xué)什么”,這節(jié)課結(jié)束后我們要會解決這3個問題,然后根據(jù)3個正方形一起探索等腰直角三角形三邊之間的關(guān)系,再到探索一般直角三角形三邊之間的關(guān)系,總結(jié)出“勾股定理”,最后通過一些練習(xí)來進行鞏固,這時和課前又很好的聯(lián)系到了一起,這時候檢驗學(xué)生“學(xué)會沒”,這個時候這節(jié)課的內(nèi)容基本完成。
    第二,順在何老師把知識化繁為簡,《勾股定理》應(yīng)該是一個非常重要而且復(fù)雜的知識,但是在何老師的課堂中,你感覺不到,沒覺得這個知識是一個非常難的知識,學(xué)生在這種輕松的氛圍中學(xué)會了“勾股定理”,會運用了。
    第三,順在課堂氣氛,學(xué)生也很好的被調(diào)動起來了。何老師也是盡量拋出問題,讓學(xué)生積極思考,討論,探索,比如探索完等腰直角三角形后到一般直角三角形的提問,在這個時候,學(xué)生學(xué)到的的是思考問題的方法,這才是數(shù)學(xué)的精華。
    當然,在這個節(jié)課順的同時,我發(fā)覺太順了,感覺缺少了一些亮點,沒什么亮點能抓住我的眼球,給我很不一樣的東西。
    另外,我覺得,“勾股定理”還沒有完全的`展開,僅僅只讓學(xué)生掌握了“勾股定理”遠遠還不夠,關(guān)于“勾股定理”很多的數(shù)學(xué)史沒有一點介紹,“勾股定理”又稱為“畢達哥拉斯定理”,這是一個非常有意義的定理,我們不能簡簡單單的拿出就用,“勾”“股”“弦”是誰提出來的?我覺得,要學(xué)習(xí)“勾股定理”,必須了解這個數(shù)學(xué)史,了解畢達哥斯拉,了解菲珈爾德。
    上面是我個人的一點不成熟的看法,說的不對,還請批評指正,謝謝!
    勾股定理獲獎?wù)f課稿篇十九
    “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學(xué)生必須掌握。
    (二)、教學(xué)目標。
    1、知識技能:1理解并會證明勾股定理的逆定理;
    2會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
    2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。
    3、情感、態(tài)度價值觀培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
    (三)、學(xué)情分析:
    本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認識結(jié)構(gòu)的目的。
    (一)復(fù)習(xí)回顧。
    復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
    (二)創(chuàng)設(shè)問題情境。
    造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。
    (三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)。
    因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
    這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的.,為了突破這個難點,我讓學(xué)生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
    接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
    在同學(xué)們完成證明之后,同時讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
    (四)組織變式訓(xùn)練。
    本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習(xí),循序漸進,由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
    (五)歸納小結(jié),納入知識體系。
    告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。
    (六)作業(yè)布置。
    由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
    為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認識上升到理性認識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。
    此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。
    總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
    將本文的word文檔下載到電腦,方便收藏和打印。
    勾股定理獲獎?wù)f課稿篇二十
    如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應(yīng)用。
    勾股定理的發(fā)現(xiàn)、驗證和應(yīng)用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
    新課標下的數(shù)學(xué)教學(xué)不僅是知識的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學(xué)目標如下:
    1、探索并利用拼圖證明勾股定理。
    2、利用勾股定理解決簡單的數(shù)學(xué)問題。
    3、感受數(shù)學(xué)文化,體會解決問題方法的多樣性和數(shù)形結(jié)合的思想。
    本著課標的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點、難點、關(guān)鍵如下:
    勾股定理的證明和簡單應(yīng)用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。
    為了講清重點、突破難點、抓住關(guān)鍵,使學(xué)生達到預(yù)定目標,我對教法和學(xué)法分析如下:
    新課程標準強調(diào)要從學(xué)生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點和初二學(xué)生的認知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動手操作、講解為中心,讓學(xué)生親歷親為,體會做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅實的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動的時間,以導(dǎo)學(xué)案的形式、運用多媒體輔助教學(xué)。
    學(xué)法是學(xué)生再生知識的法寶,為了把學(xué)生學(xué)習(xí)過程當作認知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨立思考,點撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點,指導(dǎo)學(xué)生嚴謹、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達能力。
    為了充分調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進的設(shè)計教學(xué)流程。
    1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。
    2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。
    3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個性補充和老師適當?shù)膫€性化追加的形式實現(xiàn)對定理的靈活應(yīng)用。
    4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
    為了給學(xué)生營造一個和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標準的基本理念和總體目標為指導(dǎo)思想,面向全體學(xué)生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學(xué)生都能積極的參與進來,培養(yǎng)學(xué)生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
    教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個性補充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。
    以學(xué)生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時間;同時,我注重對學(xué)生進行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時由“勾股樹”到“智慧樹”的希望寄語。
    勾股定理獲獎?wù)f課稿篇二十一
    聽了何老師的勾股定理,感觸比較多。整節(jié)課,可以說是化繁為簡、重點突出、條理清晰、層次分明。
    讓我印象最深刻,也是值得我學(xué)習(xí)的地方,應(yīng)該是利用正方形的面積來推導(dǎo)勾股定理這一部分,這也是本節(jié)課的難點與重點。從找正方形面積之間的關(guān)系,來推導(dǎo)出中間所圍的三角形三邊之間的關(guān)系,無疑是一個很巧妙的思維,在網(wǎng)格中找正方形面積的時候,學(xué)生可以充分利用所學(xué)過的割補法的知識,用不同的方法,得到面積,思維上得到了發(fā)散。接下來利用了一個有效的設(shè)問“對于等腰直角三角形三邊所滿足的這一關(guān)系,是否一般的直角三角形也滿足呢?聚攏了發(fā)散的思維,并明確了勾股定理。整個過程條理清晰、層次分明,學(xué)生在一步一步的探索中學(xué)到了新的`知識。符合學(xué)生的認知水平。
    練習(xí)分為兩部分,第一部分是:蝸牛的行走路徑、小鳥飛行路程、輪船航行。這一部分在課程開始時,以動畫的形式吸引學(xué)生的注意,并設(shè)置了求解的疑問,在勾股定理明確之后,讓學(xué)生做、學(xué)生講解、老師點撥。從中加深學(xué)生對勾股定理的印象:一是一定要在直角三角形中使用,如果沒有直角三角形,則首先要構(gòu)造出直角三角形。二是,得到了三組勾股數(shù),為勾股數(shù)的規(guī)律做鋪墊。第二部分的練習(xí)是給學(xué)生們課下練習(xí)的。
    整個課堂中,教師的教學(xué)功底通過對課堂節(jié)奏的掌控、教師用語的提煉、ppt技巧的掌握得到了充分的展現(xiàn)。很值得我學(xué)習(xí)!
    勾股定理獲獎?wù)f課稿篇二十二
    勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,這就是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
    據(jù)此,制定教學(xué)目標如下:
    1、理解并掌握勾股定理及其證明。
    2、能夠靈活地運用勾股定理及其計算。
    3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
    4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
    教學(xué)重點:勾股定理的證明和應(yīng)用。
    教學(xué)難點:勾股定理的證明。
    教法和學(xué)法就是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
    1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
    2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
    3、通過演示實物,要引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
    本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
    1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
    2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
    3、板書課題,出示學(xué)習(xí)目標。
    教師是指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,這也體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
    1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
    2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
    (1)這兩個圖形有什么特點呢?
    (2)你能寫出這兩個圖形的面積嗎?
    (3)如何運用勾股定理?是否還有其他形式?
    這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
    1、出示練習(xí),學(xué)生分組來解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
    2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
    引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
    本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
    勾股定理獲獎?wù)f課稿篇二十三
    首先,何老師是位非常有經(jīng)驗的教師,從他這節(jié)課中,我對初中課堂有了進一步的了解,也學(xué)習(xí)到了許多。
    這節(jié)課給我最大的感受就是順,這個順包含幾個方面:
    第一,這節(jié)課按照學(xué)案的設(shè)計結(jié)構(gòu)很順利的講下來了,一個環(huán)節(jié)連著一個環(huán)節(jié),很順利,沒有遇到太多的問題。首先從3個問題導(dǎo)入,明確了“學(xué)什么”,這節(jié)課結(jié)束后我們要會解決這3個問題,然后根據(jù)3個正方形一起探索等腰直角三角形三邊之間的關(guān)系,再到探索一般直角三角形三邊之間的關(guān)系,總結(jié)出“勾股定理”,最后通過一些練習(xí)來進行鞏固,這時和課前又很好的聯(lián)系到了一起,這時候檢驗學(xué)生“學(xué)會沒”,這個時候這節(jié)課的內(nèi)容基本完成。
    第二,順在何老師把知識化繁為簡,《勾股定理》應(yīng)該是一個非常重要而且復(fù)雜的知識,但是在何老師的課堂中,你感覺不到,沒覺得這個知識是一個非常難的知識,學(xué)生在這種輕松的氛圍中學(xué)會了“勾股定理”,會運用了。
    第三,順在課堂氣氛,學(xué)生也很好的被調(diào)動起來了。何老師也是盡量拋出問題,讓學(xué)生積極思考,討論,探索,比如探索完等腰直角三角形后到一般直角三角形的提問,在這個時候,學(xué)生學(xué)到的的是思考問題的方法,這才是數(shù)學(xué)的精華。
    當然,在這個節(jié)課順的同時,我發(fā)覺太順了,感覺缺少了一些亮點,沒什么亮點能抓住我的眼球,給我很不一樣的東西。
    另外,我覺得,“勾股定理”還沒有完全的展開,僅僅只讓學(xué)生掌握了“勾股定理”遠遠還不夠,關(guān)于“勾股定理”很多的數(shù)學(xué)史沒有一點介紹,“勾股定理”又稱為“畢達哥拉斯定理”,這是一個非常有意義的定理,我們不能簡簡單單的拿出就用,“勾”“股”“弦”是誰提出來的?我覺得,要學(xué)習(xí)“勾股定理”,必須了解這個數(shù)學(xué)史,了解畢達哥斯拉,了解菲珈爾德。
    上面是我個人的一點不成熟的看法,說的不對,還請批評指正,謝謝!