編寫教案時要注重學科知識和教學方法的有機結(jié)合。教案應(yīng)該根據(jù)學生的知識水平進行分層設(shè)計。教案中的教學活動要多樣化,靈活運用各種教學方法。
高中數(shù)學必修教案篇一
專題八當今世界經(jīng)濟的全球化趨勢。
通史概要:
當今世界經(jīng)濟發(fā)展有兩個明顯的趨勢:一是世界經(jīng)濟區(qū)域集團化,二是世界經(jīng)濟全球化。世界經(jīng)濟區(qū)域集團化是最終實現(xiàn)經(jīng)濟全球化的重要步驟和途徑,經(jīng)濟全球化則是區(qū)域經(jīng)濟集團化的最終歸宿。
世界經(jīng)濟區(qū)域集團化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強合作的結(jié)果,也是世界經(jīng)濟競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟競爭和客觀上存在的分工。區(qū)域集團化的發(fā)展分為三個階段:第一階段為五六十年代,世界經(jīng)濟集團化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團化成為一種世界經(jīng)濟現(xiàn)象。歐洲區(qū)域集團化趨勢進一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟集團也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團化掀起新的浪潮,進入了較高層次的經(jīng)濟一體化時期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟集團。
世界經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟全球化的過程中的問題是:在經(jīng)濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機、全球性的經(jīng)濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當今世界經(jīng)濟發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機遇和挑戰(zhàn),成了新時期經(jīng)濟發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟發(fā)展趨勢這一經(jīng)濟現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認識歐洲聯(lián)盟成立對世界經(jīng)濟和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟在二戰(zhàn)后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗,學習用聯(lián)系的方法看待問題,提高理論指導(dǎo)實踐的能力;通過分組學習,搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學習,認識當今國際社會國家間團結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責任感。
教學課時:1課時。
重點難點:
重點:歐洲走向聯(lián)合過程及影響。
難點:歐洲走向聯(lián)合的原因。
教學建議:
1、本課共有三個方面的內(nèi)容,“西歐經(jīng)濟的'黃金時代'”主要講述:二戰(zhàn)后的20世紀50年代到60年代,西歐各國經(jīng)濟在恢復(fù)的基礎(chǔ)上,進入調(diào)整增長期,被稱為西歐經(jīng)濟的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經(jīng)濟高速發(fā)展的共同原因:第一,西歐各國進行社會改革和政策調(diào)整。進行社會改革,例如:推行福利制度,適當改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計民生的重要工業(yè)部門。這些政策的推行,促進了西歐經(jīng)濟的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經(jīng)濟發(fā)展的啟動資金,西歐重工業(yè)在短時期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟合作的成功,歐洲經(jīng)濟不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領(lǐng)域的合作很快便實施開來。
4、為進一步加強歐洲共同體之間的經(jīng)濟合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經(jīng)濟的聯(lián)合,從而進一步加強歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學習用比較的方法認識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認識apec建立的史實及影響。
(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟一體化進程的學習和了解,體會當今世界國家間加強合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學課時:1課時。
重點難點:
重點:通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
難點:中國積極參與世界區(qū)域經(jīng)濟組織的意義。
教學建議:
1、在經(jīng)濟全球化的進程中,亞太地區(qū)的經(jīng)濟集團化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟集團有兩個分別在該地區(qū)。這一地區(qū)成為當今世界上經(jīng)濟發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個經(jīng)濟區(qū)域集團為例,介紹了當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。每個集團內(nèi)部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團相聯(lián)系,從而使世界經(jīng)濟形成了密不可分的一個整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時近三分之一世紀。東盟在維護和促進各成員國相互間的政治和經(jīng)濟合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟的崛起,特別是歐洲經(jīng)濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風俗習慣等又頗相似;經(jīng)濟互補性強;相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實行經(jīng)濟一體化的必要性,又具有實行經(jīng)濟一體化的可能性。美國認為要取得世界經(jīng)濟的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟區(qū)域集團,才能在經(jīng)濟全球化大潮中立于不敗之地。
4、二十世紀七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟政策和經(jīng)濟迅速發(fā)展為亞太區(qū)域經(jīng)濟合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟,科技,貿(mào)易和發(fā)展等方面多邊合作的機會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗,促進本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運作模式均區(qū)別于歐盟和nafta,有自身的特點,這些特點適應(yīng)了apec各成員國經(jīng)濟發(fā)展的狀況和經(jīng)濟運行模式。
三、經(jīng)濟全球化的世界。
課標要求:
(1)以“布雷頓森林體系”建立為例,認識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用。
(3)了解經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
教學目標:
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用;概述經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟全球化出現(xiàn)的問題?從多角度去分析歷史問題。
高中數(shù)學必修教案篇二
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復(fù)習中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。
本章常用的數(shù)學思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學的始終。近幾年高考試題函數(shù)熱點之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點。考查函數(shù)內(nèi)容的同時,用函數(shù)的思想觀點研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個重點。
規(guī)律方法總結(jié)。
求函數(shù)解析式時,針對條件的特點可選用換元法、待定系數(shù)法、湊項法、列方程組法等進行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
高中數(shù)學必修教案篇三
初中新課程中數(shù)學知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數(shù)學教學的實踐來看,學生掌握了這些知識點對學習新的知識有一定的促進作用,因此,建議教師可根據(jù)學生和教學的實際情況,做適當?shù)难a充,同時,初中學習的有理數(shù)乘方及運算性質(zhì)和二次函數(shù),這些知識也要進行必要的復(fù)習等,這樣有利于后期的教學。
2、思維能力和運算能力的進一步強化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學生的實踐能力很強,但學生的數(shù)學思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學學習的影響很大。因此,教師要逐漸培養(yǎng)學生的抽象思維能力。同時,由于初中大量使用計算器,學生的計算能力很弱,這與高中數(shù)學要求學生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學的實踐來看,學生作業(yè)中出現(xiàn)的大量錯誤與計算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學生的實際情況,從高一開始就要切實提高學生的運算能力。
3、抓住學科特點,做好順利過渡。
高中數(shù)學知識量大,理論性、綜合性強,同時高中課時少,學生基礎(chǔ)差等,知識的難度和對學生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強)。學好高中數(shù)學需要學生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實際情況及時調(diào)整教學方法和教學過程,使學生能順利進入高中并能盡快適應(yīng)高中的數(shù)學學習。
高中數(shù)學必修教案篇四
根據(jù)德國心理學家艾賓浩斯繪制的遺忘曲線,學生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內(nèi)在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識,使內(nèi)容條理化、清晰化地呈現(xiàn)在同學的面前,從而完成由厚到薄的過程,對重難點和關(guān)鍵點,進行重點的、有針對性的講解。配以適當?shù)木毩?,提高學生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學生科學合理的知識結(jié)構(gòu)的形成,使知識系統(tǒng)化和網(wǎng)絡(luò)化。
舊知檢測。
要想有效的提高課堂的復(fù)習效率,就須克服“眼高手低”的毛病。很多同學上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學生更好地了解自己知識的掌握情況。可以設(shè)置幾個基礎(chǔ)的填空和一個左右的解答題,通過解答的過程讓學生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習的效率。
精選精講。
精心的選擇適量的典型例題,分析解決這些問題應(yīng)該是一堂復(fù)習課的核心內(nèi)容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學思想方法,提高學生分析問題、解決問題的能力。
高中數(shù)學必修教案篇五
要學好數(shù)學,最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學基礎(chǔ),才能夠把高中數(shù)學好,同樣只有打好基礎(chǔ),才能夠數(shù)學取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學好數(shù)學,對數(shù)學感興趣。
其實學好數(shù)學最好的辦法就是發(fā)自內(nèi)心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感。
其實學好數(shù)學辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學必修教案篇六
各位老師大家好!
我說課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
(一)教材分析。
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二)學情分析。
本節(jié)課的教學對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設(shè)計時需從學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、鞏固和應(yīng)用過程。
(三)教學目標。
1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。
2.掌握過兩點的直線斜率的計算公式;。
3.通過經(jīng)歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;。
生嚴謹求簡的數(shù)學精神。
重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點:直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
(四)教法和學法。
課堂教學應(yīng)有利于學生的數(shù)學素質(zhì)的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設(shè)問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質(zhì),這是本節(jié)課的教學原則。根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問題串的形式,啟發(fā)引導(dǎo)學生類比、聯(lián)想,產(chǎn)生知識遷移;通過幾何畫板演示實驗、探索交流相結(jié)合的教學方法激發(fā)學生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學生很自然達到本節(jié)課的學習目標。
(五)教學過程。
環(huán)節(jié)1.指明研究方向(3min)。
簡介17世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史。
高中數(shù)學必修教案篇七
曾經(jīng)有同學問我,你是怎么學數(shù)學的,也沒見你做多少的練習題,可數(shù)學的成績不錯。我覺得課堂的學習是關(guān)鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內(nèi),是教師與學生的交流,這時候,作為學生你的思維要跟得上老師的變化,這個知識點的關(guān)鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。
1、課前預(yù)習是關(guān)鍵。
相信我們學生都聽到過老師對我們的要求,要進行課前預(yù)習,不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預(yù)習的學生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學生預(yù)習了,就是不錯的了,另外,既使有的學生也預(yù)習了,只是走馬觀花的看一下書,那效果可想而知。
預(yù)習也要講究方法,在預(yù)習中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預(yù)習還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預(yù)習的過程也是一個自學的過程,有助于提高自己分析問題、解決問題的能力,將自己在預(yù)習中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。
2、科學聽課是保障。
所謂科學聽課也就是說在教師授課的過程中學生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個器官,全身心的投入到課堂學習中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結(jié)?如何突破難點,結(jié)合自己在預(yù)習時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
3、做一定量的習題。
在數(shù)學的學習過程中,對于做多少習題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習題;另一種是做適當?shù)牧曨}。做大量的習題的做法來源于題海戰(zhàn)術(shù),曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學習過程中,時間非常緊,在有限的時間內(nèi)要學習好幾門知識,你數(shù)學題做的多了,難免會在其他科目上用時不夠,會對其他科目的學習造成影響。因此,大量的做題是不可取的。
在學習的過程中,我崇尚做適當?shù)牧曨},而且在實際的學習過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關(guān)鍵的問題是在做完這道題后的分析總結(jié),數(shù)學的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關(guān)鍵點再熟悉一遍,雖然當時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。
高中數(shù)學必修教案篇八
1、知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2、過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3、情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導(dǎo):觀察、動手實踐、討論、類比。
四、教學過程。
(一)創(chuàng)設(shè)情景,揭開課題。
展示廬山的風景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的。投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習。
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理。
請學生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習題1.2[a組]1。
高中數(shù)學必修教案篇九
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】 感受數(shù)形結(jié)合的思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容―數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習,歸納總結(jié)
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學知識
(五)、歸納小結(jié),強化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習題2.2 1、2、3
選作第4題
高中數(shù)學必修教案篇十
一、教學目標:1.了解普查的意義.2.結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
二、重難點:結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
三、教學方法:閱讀材料、思考與交流。
四、教學過程。
(一)、普查。
1、【問題提出】p7。
通過我國第五次人口普查的有關(guān)數(shù)據(jù),讓學生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據(jù)可以提供大量的信息,為國家的宏觀決策提供有關(guān)的支持.教科書通過對人口普查的有關(guān)新聞報道,讓學生體會人口普查的規(guī)模是何等的宏大與艱辛.
教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實行情況的一個檢驗,比如,國家計劃生育政策,經(jīng)濟發(fā)展戰(zhàn)略,國家“普及九年義務(wù)教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學生對于普查的理解.學生可能有一個誤解,普查就是100%的準確,其實不然,即使是最周全的調(diào)查方案,在實際執(zhí)行時都會產(chǎn)生一個誤差.教科書通過這個問題,目的是讓學生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設(shè)計是盡可能讓這個誤差降低到最小.同時,也要讓學生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學生體會人口普查數(shù)據(jù)得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.
2、【閱讀材料】p4。
“閱讀材料”是課堂閱讀,目的是讓學生了解普查工作的特點和重要性,以及我國目前主要的一些普查工作.進而,總結(jié)出普查的主要不足之處,這是從一個方面說明了抽樣調(diào)查的必要性.
普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細地了解某項重要的國情、國力.
普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.
普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.
(二)、抽樣調(diào)查。
【例1和其后的“思考交流”】p8~9。
緊接著,教科書通過例1和“思考交流”的兩個問題,讓學生了解普查有時候難以實現(xiàn).這主要有兩個方面的原因,其一,被調(diào)查對象的量大;其二,普查對被調(diào)查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調(diào)查的必要性.然后,教科書通過抽象概括總結(jié)出抽樣調(diào)查的兩個主要優(yōu)點.
【例2和其后的“思考交流”】p9~10。
主要是討論在抽樣調(diào)查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當,那么調(diào)查的結(jié)果可能會出現(xiàn)與實際情況不符,甚至是錯誤的結(jié)果,導(dǎo)致對決策的誤導(dǎo).在抽樣調(diào)查時,一定要保證隨機性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.
由于檢驗對象的量很大,或檢驗對檢驗對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.
抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
解:統(tǒng)計的總體是指該地10000名學生的體重;個體是指這10000名學生中每一名學生的體重;樣本指這10000名學生中抽出的200名學生的體重;總體容量為10000;樣本容量為200.若對每一個個體逐一進行“調(diào)查”,有時費時、費力,有時根本無法實現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機會均等的前提下從總體中抽取部分個體,進行抽樣調(diào)查.
例2為了制定某市高一、高二、高三三個年級學生校服的生產(chǎn)計劃,有關(guān)部門準備對180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:
a.測量少年體校中180名男子籃球、排球隊員的身高;。
b.查閱有關(guān)外地180名男生身高的統(tǒng)計資料;。
c.在本市的市區(qū)和郊縣各任選一所完全中學,兩所初級中學,在這六所學校有關(guān)年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.
解:選c方案.理由:方案c采取了隨機抽樣的方法,隨機樣本比較具有代表性、普遍性,可以被用來估計總體.
例3中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內(nèi)獲得當年春節(jié)聯(lián)歡晚會的收視率.下面三名同學為電視臺設(shè)計的調(diào)查方案.
甲同學:我把這張《春節(jié)聯(lián)歡晚會收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.
乙同學:我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調(diào)查表,只要一兩天就可以統(tǒng)計出收視率.
丙同學:我在電話號碼本上隨機地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.
請問:上述三名同學設(shè)計的調(diào)查方案能夠獲得比較準確的收視率嗎?為什么?
解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準確的收視率.
(三)、課堂小結(jié):1、普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
(四)、作業(yè):p10練習題;p10【習題1―2】。
五、教后反思:
高中數(shù)學必修教案篇十一
一、教學目標:
知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義。
過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義。
情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
二、重難點:
教學重點:曲線參數(shù)方程的定義及方法。
教學難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.
三、教學方法:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學.
四、教學過程。
(一)、復(fù)習引入:
1.寫出圓方程的標準式和對應(yīng)的參數(shù)方程。
圓參數(shù)方程(為參數(shù))。
(2)圓參數(shù)方程為:(為參數(shù))。
2.寫出橢圓參數(shù)方程.
(二)、講解新課:
如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),
那么又如何描述直線l上任意點的位置呢?
2、教師引導(dǎo)學生推導(dǎo)直線的參數(shù)方程:
(1)過定點傾斜角為的直線的。
參數(shù)方程。
(為參數(shù))。
【辨析直線的參數(shù)方程】:設(shè)m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.
(2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內(nèi)分點;當且時,m為外分點;當時,點m與q重合。
(三)、直線的參數(shù)方程應(yīng)用,強化理解。
1、例題:
學生練習,教師準對問題講評。反思歸納:
1)求直線參數(shù)方程的方法;。
2)利用直線參數(shù)方程求交點。
2、鞏固導(dǎo)練:
補充:
1)直線與圓相切,那么直線的傾斜角為(a)。
a.或b.或c.或d.或。
2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數(shù))化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得,。
(四)、小結(jié):
(1)直線參數(shù)方程求法;。
(2)直線參數(shù)方程的特點;。
(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
(五)、作業(yè):
補充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為。
【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學反思:
高中數(shù)學必修教案篇十二
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學過程。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學必修教案篇十三
2.教學重點。
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.。
3.教學難點。
函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。
1.教學有利因素。
2.教學不利因素。
1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.。
為達成課堂教學目標,突出重點,突破難點,我們主要采取以下形式組織學習材料:
(一)創(chuàng)設(shè)情境,引入課題。
問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?
設(shè)函數(shù)的定義域為,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學生類比定義“遞減”,接著推出下圖,讓學生準確回答單調(diào)性.)。
(二)引導(dǎo)探索,生成概念。
問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
(2)函數(shù)在區(qū)間上有何單調(diào)性?
預(yù)設(shè):學生會不置可否,或者憑感覺猜測,可追問判定依據(jù).。
問題3:(1)如何用數(shù)學符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”,觀察函數(shù)在區(qū)間上的圖象變化.。
(4)已知,若有。
能保證函數(shù)在區(qū)間上遞增嗎?
設(shè)計說明:可先請持贊同觀點的同學說明理由,再請持反對意見的學生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學生回答全部取完或任取,追問“總不能一個一個驗證吧?”
問題4:如何用數(shù)學語言準確刻畫函數(shù)在區(qū)間上遞增呢?
問題5:請你試著用數(shù)學語言定義函數(shù)在區(qū)間上是遞減的.。
(三)學以致用,理解感悟。
判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)。
(1)設(shè)函數(shù)的定義域為,若對任意,都有,則在區(qū)間上遞增;
(2)設(shè)函數(shù)的定義域為r,若對任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。
例題:判斷并證明函數(shù)的單調(diào)性.。
高中數(shù)學必修教案篇十四
3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學學習興趣。
重點:理解平面直角坐標中點與數(shù)的一一對應(yīng)關(guān)系;
難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。
教師準備四張大的紙質(zhì)坐標格子。
一、溫故知新,導(dǎo)入新課。
游戲?qū)耄荷弦还?jié)課我們學習了有序數(shù)對,大家學習積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學。
二、新課教學
課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。
學生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小
b說我們可以每個點列一個數(shù)軸???
教師活動:引導(dǎo)學生思考,怎么才能用同一標準,方便的確定每一點的位置?
結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?
得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。
那有了這樣的平面直角坐標系,平面內(nèi)的點就可以用之前學的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)
教師提問2:同學們按照這種做法,在坐標紙上標出b、c、d的坐標。
教師活動:走下講臺,關(guān)注學生的匯坐標過程方法,指出學生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?
教師活動:引導(dǎo)學生思考歸納坐標軸上的點的坐標的特點。
得出結(jié)論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。
三、課程鞏固
師生互動:與學生一起回憶平面直角坐標系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標,以及坐標軸上的點的坐標特點。
“練一練”:
在黑板上貼出四張事先準備好的紙質(zhì)坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應(yīng)的同學上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學生不能提示,提示一次扣2分。比賽看哪組學生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學上黑板來描點。
教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
四、小結(jié)作業(yè):
思考平面直角坐標系中坐標與點的對應(yīng)關(guān)系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。
平面直角坐標系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標軸的交點為平面直角坐標系的原點。
高中數(shù)學必修教案篇十五
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學過程。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習案》作業(yè)十四及十五。
高中數(shù)學必修教案篇十六
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結(jié)合的能力;。
教學重點:型的不等式的解法;。
教學難點:利用絕對值的意義分析、解決問題.
教學過程設(shè)計。
教師活動。
學生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習】解下列不等式:
(1);
(2)。
【設(shè)問】如果在中的,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果中的是,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進,在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。
針對解()絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出與()絕對值不等式的教學目標.。
在將看成一個整體的關(guān)鍵處點撥、啟發(fā),使學生主動地進行練習.。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.。
三、課堂練習。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學目標落實情況.。
四、小結(jié)。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習題2、3、4。
課堂教學設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學生解題能力的目的.
3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.
高中數(shù)學必修教案篇十七
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學習,學生應(yīng)當達到以下學習目標:
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。
數(shù)學思想方法的教學是中學數(shù)學教學中的重要組成部分,有利于學生加深數(shù)學知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導(dǎo)。本章的兩個主要數(shù)學結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學生已經(jīng)學習了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強數(shù)學思想方法的教學。
加強與前后各章教學內(nèi)容的聯(lián)系,注意復(fù)習和應(yīng)用已學內(nèi)容,并為后續(xù)章節(jié)教學內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數(shù)學知識的學習和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學習的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標準》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學生已經(jīng)學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學數(shù)學的最終目的是應(yīng)用數(shù)學,而如今比較突出的兩個問題是,學生應(yīng)用數(shù)學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數(shù)學問題,不能把所學的數(shù)學知識應(yīng)用到實際問題中去,對所學數(shù)學知識的實際背景了解不多,雖然學生機械地模仿一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應(yīng)用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應(yīng)用舉例(約4課時)
1.3實習作業(yè)(約1課時)
1.要在本章的教學中,應(yīng)該根據(jù)教學實際,啟發(fā)學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學過程中學生思考問題的方向來啟發(fā)學生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。
2.適當安排一些實習作業(yè),目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學語言表達實習過程和實習結(jié)果能力,增強學生應(yīng)用數(shù)學的意識和數(shù)學實踐能力。教師要注意對于學生實習作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
高中數(shù)學必修教案篇十八
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系。
【情感態(tài)度與價值觀】感受數(shù)形結(jié)合的.思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.。
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—數(shù)軸(板書課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點。
(2)標正方向。
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫。
(四)動手練習,歸納總結(jié)。
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。
(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學知識。
(五)、歸納小結(jié),強化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習題2.21、2、3。
選作第4題。
高中數(shù)學必修教案篇十九
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點。
重點:幾組三角恒等式的應(yīng)用。
難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。
高中數(shù)學必修教案篇一
專題八當今世界經(jīng)濟的全球化趨勢。
通史概要:
當今世界經(jīng)濟發(fā)展有兩個明顯的趨勢:一是世界經(jīng)濟區(qū)域集團化,二是世界經(jīng)濟全球化。世界經(jīng)濟區(qū)域集團化是最終實現(xiàn)經(jīng)濟全球化的重要步驟和途徑,經(jīng)濟全球化則是區(qū)域經(jīng)濟集團化的最終歸宿。
世界經(jīng)濟區(qū)域集團化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強合作的結(jié)果,也是世界經(jīng)濟競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟競爭和客觀上存在的分工。區(qū)域集團化的發(fā)展分為三個階段:第一階段為五六十年代,世界經(jīng)濟集團化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團化成為一種世界經(jīng)濟現(xiàn)象。歐洲區(qū)域集團化趨勢進一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟集團也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團化掀起新的浪潮,進入了較高層次的經(jīng)濟一體化時期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟集團。
世界經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟全球化的過程中的問題是:在經(jīng)濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機、全球性的經(jīng)濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當今世界經(jīng)濟發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機遇和挑戰(zhàn),成了新時期經(jīng)濟發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟發(fā)展趨勢這一經(jīng)濟現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認識歐洲聯(lián)盟成立對世界經(jīng)濟和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟在二戰(zhàn)后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗,學習用聯(lián)系的方法看待問題,提高理論指導(dǎo)實踐的能力;通過分組學習,搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學習,認識當今國際社會國家間團結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責任感。
教學課時:1課時。
重點難點:
重點:歐洲走向聯(lián)合過程及影響。
難點:歐洲走向聯(lián)合的原因。
教學建議:
1、本課共有三個方面的內(nèi)容,“西歐經(jīng)濟的'黃金時代'”主要講述:二戰(zhàn)后的20世紀50年代到60年代,西歐各國經(jīng)濟在恢復(fù)的基礎(chǔ)上,進入調(diào)整增長期,被稱為西歐經(jīng)濟的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經(jīng)濟高速發(fā)展的共同原因:第一,西歐各國進行社會改革和政策調(diào)整。進行社會改革,例如:推行福利制度,適當改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計民生的重要工業(yè)部門。這些政策的推行,促進了西歐經(jīng)濟的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經(jīng)濟發(fā)展的啟動資金,西歐重工業(yè)在短時期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟合作的成功,歐洲經(jīng)濟不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領(lǐng)域的合作很快便實施開來。
4、為進一步加強歐洲共同體之間的經(jīng)濟合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經(jīng)濟的聯(lián)合,從而進一步加強歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學目標:
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學習用比較的方法認識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認識apec建立的史實及影響。
(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟一體化進程的學習和了解,體會當今世界國家間加強合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學課時:1課時。
重點難點:
重點:通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
難點:中國積極參與世界區(qū)域經(jīng)濟組織的意義。
教學建議:
1、在經(jīng)濟全球化的進程中,亞太地區(qū)的經(jīng)濟集團化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟集團有兩個分別在該地區(qū)。這一地區(qū)成為當今世界上經(jīng)濟發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個經(jīng)濟區(qū)域集團為例,介紹了當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。每個集團內(nèi)部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團相聯(lián)系,從而使世界經(jīng)濟形成了密不可分的一個整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時近三分之一世紀。東盟在維護和促進各成員國相互間的政治和經(jīng)濟合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟的崛起,特別是歐洲經(jīng)濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風俗習慣等又頗相似;經(jīng)濟互補性強;相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實行經(jīng)濟一體化的必要性,又具有實行經(jīng)濟一體化的可能性。美國認為要取得世界經(jīng)濟的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟區(qū)域集團,才能在經(jīng)濟全球化大潮中立于不敗之地。
4、二十世紀七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟政策和經(jīng)濟迅速發(fā)展為亞太區(qū)域經(jīng)濟合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟,科技,貿(mào)易和發(fā)展等方面多邊合作的機會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗,促進本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運作模式均區(qū)別于歐盟和nafta,有自身的特點,這些特點適應(yīng)了apec各成員國經(jīng)濟發(fā)展的狀況和經(jīng)濟運行模式。
三、經(jīng)濟全球化的世界。
課標要求:
(1)以“布雷頓森林體系”建立為例,認識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用。
(3)了解經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
教學目標:
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用;概述經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟全球化出現(xiàn)的問題?從多角度去分析歷史問題。
高中數(shù)學必修教案篇二
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復(fù)習中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。
本章常用的數(shù)學思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學思想方法來分析問題、解決問題的能力。
函數(shù)。
函數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學的始終。近幾年高考試題函數(shù)熱點之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點。考查函數(shù)內(nèi)容的同時,用函數(shù)的思想觀點研究問題,以及數(shù)形結(jié)合思想、分類討論思想的靈活熟練應(yīng)用,也是高考的一個重點。
規(guī)律方法總結(jié)。
求函數(shù)解析式時,針對條件的特點可選用換元法、待定系數(shù)法、湊項法、列方程組法等進行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
高中數(shù)學必修教案篇三
初中新課程中數(shù)學知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數(shù)學教學的實踐來看,學生掌握了這些知識點對學習新的知識有一定的促進作用,因此,建議教師可根據(jù)學生和教學的實際情況,做適當?shù)难a充,同時,初中學習的有理數(shù)乘方及運算性質(zhì)和二次函數(shù),這些知識也要進行必要的復(fù)習等,這樣有利于后期的教學。
2、思維能力和運算能力的進一步強化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學生的實踐能力很強,但學生的數(shù)學思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學學習的影響很大。因此,教師要逐漸培養(yǎng)學生的抽象思維能力。同時,由于初中大量使用計算器,學生的計算能力很弱,這與高中數(shù)學要求學生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學的實踐來看,學生作業(yè)中出現(xiàn)的大量錯誤與計算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學生的實際情況,從高一開始就要切實提高學生的運算能力。
3、抓住學科特點,做好順利過渡。
高中數(shù)學知識量大,理論性、綜合性強,同時高中課時少,學生基礎(chǔ)差等,知識的難度和對學生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強)。學好高中數(shù)學需要學生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實際情況及時調(diào)整教學方法和教學過程,使學生能順利進入高中并能盡快適應(yīng)高中的數(shù)學學習。
高中數(shù)學必修教案篇四
根據(jù)德國心理學家艾賓浩斯繪制的遺忘曲線,學生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內(nèi)在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識,使內(nèi)容條理化、清晰化地呈現(xiàn)在同學的面前,從而完成由厚到薄的過程,對重難點和關(guān)鍵點,進行重點的、有針對性的講解。配以適當?shù)木毩?,提高學生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學生科學合理的知識結(jié)構(gòu)的形成,使知識系統(tǒng)化和網(wǎng)絡(luò)化。
舊知檢測。
要想有效的提高課堂的復(fù)習效率,就須克服“眼高手低”的毛病。很多同學上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學生更好地了解自己知識的掌握情況。可以設(shè)置幾個基礎(chǔ)的填空和一個左右的解答題,通過解答的過程讓學生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習的效率。
精選精講。
精心的選擇適量的典型例題,分析解決這些問題應(yīng)該是一堂復(fù)習課的核心內(nèi)容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學思想方法,提高學生分析問題、解決問題的能力。
高中數(shù)學必修教案篇五
要學好數(shù)學,最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學基礎(chǔ),才能夠把高中數(shù)學好,同樣只有打好基礎(chǔ),才能夠數(shù)學取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學好數(shù)學,對數(shù)學感興趣。
其實學好數(shù)學最好的辦法就是發(fā)自內(nèi)心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感。
其實學好數(shù)學辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學必修教案篇六
各位老師大家好!
我說課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
(一)教材分析。
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二)學情分析。
本節(jié)課的教學對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設(shè)計時需從學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、鞏固和應(yīng)用過程。
(三)教學目標。
1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;。
2.掌握過兩點的直線斜率的計算公式;。
3.通過經(jīng)歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;。
生嚴謹求簡的數(shù)學精神。
重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點:直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
(四)教法和學法。
課堂教學應(yīng)有利于學生的數(shù)學素質(zhì)的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設(shè)問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質(zhì),這是本節(jié)課的教學原則。根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問題串的形式,啟發(fā)引導(dǎo)學生類比、聯(lián)想,產(chǎn)生知識遷移;通過幾何畫板演示實驗、探索交流相結(jié)合的教學方法激發(fā)學生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學生很自然達到本節(jié)課的學習目標。
(五)教學過程。
環(huán)節(jié)1.指明研究方向(3min)。
簡介17世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史。
高中數(shù)學必修教案篇七
曾經(jīng)有同學問我,你是怎么學數(shù)學的,也沒見你做多少的練習題,可數(shù)學的成績不錯。我覺得課堂的學習是關(guān)鍵,要緊緊抓住課堂的45分鐘的時間。在這有限的時間內(nèi),是教師與學生的交流,這時候,作為學生你的思維要跟得上老師的變化,這個知識點的關(guān)鍵點在那兒,前后的聯(lián)系是什么,在聽課的過程中不能分心、走神,提高聽課的效率。為此,在每一堂課前,我都要做好以下幾項工作。
1、課前預(yù)習是關(guān)鍵。
相信我們學生都聽到過老師對我們的要求,要進行課前預(yù)習,不論什么課,這是所有的老師都會提的一個要求,可真正進行課前預(yù)習的學生有多少呢,班里面我們也沒有統(tǒng)計過,不過我覺得有一半的學生預(yù)習了,就是不錯的了,另外,既使有的學生也預(yù)習了,只是走馬觀花的看一下書,那效果可想而知。
預(yù)習也要講究方法,在預(yù)習中發(fā)現(xiàn)了難點,出現(xiàn)了自己解決不了的問題,這個就是聽課中的重點,要做好標記;通過預(yù)習還能發(fā)現(xiàn)自己沒有掌握住的舊知識,起到溫故而知新的作用,可以對知識起到查漏補缺的效果;另外,預(yù)習的過程也是一個自學的過程,有助于提高自己分析問題、解決問題的能力,將自己在預(yù)習中的理解和老師講解的進行對照,不斷進行改進,可以起到提高自己思維水平的作用。
2、科學聽課是保障。
所謂科學聽課也就是說在教師授課的過程中學生的表現(xiàn),是不是為這節(jié)課做好了準備工作。在聽課的過程中要調(diào)動眼、耳、心、口、手等各個器官,全身心的投入到課堂學習中去,在聽課的過程中遇到重要的知識點同時又要做好筆記,但是不能因為筆記的原因而影響到聽課,所以,這里面有一個科學合理安排聽課時間的問題。聽課的過程中是一個高度集中注意力的過程,但同時也是有張有弛;聽課的過程中也的聽的技巧,聽教師如何分析?如何歸納總結(jié)?如何突破難點,結(jié)合自己在預(yù)習時又是如何理解的,相互比較,同時要用心思考,跟上教師的教學思路,能在教師的啟發(fā)和點撥下有所得,這是這一堂課最根本的關(guān)節(jié)所在。
3、做一定量的習題。
在數(shù)學的學習過程中,對于做多少習題并沒有確切的數(shù)據(jù),但有兩種傾向:一種是做大量的習題;另一種是做適當?shù)牧曨}。做大量的習題的做法來源于題海戰(zhàn)術(shù),曾經(jīng)有一種說法,做題吧,在做題的過程中你就掌握了知識點,誠然,多做題對于掌握知識是有好處的,但并不是題做的越多越好。在高中的學習過程中,時間非常緊,在有限的時間內(nèi)要學習好幾門知識,你數(shù)學題做的多了,難免會在其他科目上用時不夠,會對其他科目的學習造成影響。因此,大量的做題是不可取的。
在學習的過程中,我崇尚做適當?shù)牧曨},而且在實際的學習過程中我也是這樣做的。做題的過程中是一個舉一反三的過程,做會這一道題就掌握了這一類題目的做法,關(guān)鍵的問題是在做完這道題后的分析總結(jié),數(shù)學的題目太多了,你是不可能做完所有的題的,因此,我們在掌握知識點的時候是一類一類的掌握,所謂的舉一反三,觸類旁通。每當做完一道題后尤其是難度大的題目,我會靜下心來再從頭看一遍,把其中的關(guān)鍵點再熟悉一遍,雖然當時看起來是費了一點時間,但那收獲是很大的。以后再遇到這類題目的時候,解決起來就相對容易的多。
高中數(shù)學必修教案篇八
1、知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2、過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3、情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導(dǎo):觀察、動手實踐、討論、類比。
四、教學過程。
(一)創(chuàng)設(shè)情景,揭開課題。
展示廬山的風景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的。投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習。
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理。
請學生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習題1.2[a組]1。
高中數(shù)學必修教案篇九
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】 感受數(shù)形結(jié)合的思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容―數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習,歸納總結(jié)
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學知識
(五)、歸納小結(jié),強化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習題2.2 1、2、3
選作第4題
高中數(shù)學必修教案篇十
一、教學目標:1.了解普查的意義.2.結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
二、重難點:結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性.
三、教學方法:閱讀材料、思考與交流。
四、教學過程。
(一)、普查。
1、【問題提出】p7。
通過我國第五次人口普查的有關(guān)數(shù)據(jù),讓學生體會到統(tǒng)計對政府決策的重要作用――統(tǒng)計數(shù)據(jù)可以提供大量的信息,為國家的宏觀決策提供有關(guān)的支持.教科書通過對人口普查的有關(guān)新聞報道,讓學生體會人口普查的規(guī)模是何等的宏大與艱辛.
教科書提出了三個有代表性的問題.第一個問題主要是針對人口普查的作用,人口普查可以了解一個國家人口全面情況,比如,人口總數(shù)、男女性別比、受教育狀況、增長趨勢等.人口普查是對國家的政府決策實行情況的一個檢驗,比如,國家計劃生育政策,經(jīng)濟發(fā)展戰(zhàn)略,國家“普及九年義務(wù)教育”政策,人民群眾的生活水平等.第二個問題是針對普查本身存在的問題提出的,以加深學生對于普查的理解.學生可能有一個誤解,普查就是100%的準確,其實不然,即使是最周全的調(diào)查方案,在實際執(zhí)行時都會產(chǎn)生一個誤差.教科書通過這個問題,目的是讓學生理解在人口普查中出現(xiàn)漏登是正常情況,調(diào)查方案的設(shè)計是盡可能讓這個誤差降低到最小.同時,也要讓學生理解人口普查的工作,即使出現(xiàn)漏登現(xiàn)象,人口普查的數(shù)據(jù)對國家的宏觀決策依然具有重要的作用.第三個問題是針對人口普查工作的艱辛而提出的,讓學生體會人口普查數(shù)據(jù)得來不易,要尊重人口普查人員的勞動,對人口普查工作要大力支持.
2、【閱讀材料】p4。
“閱讀材料”是課堂閱讀,目的是讓學生了解普查工作的特點和重要性,以及我國目前主要的一些普查工作.進而,總結(jié)出普查的主要不足之處,這是從一個方面說明了抽樣調(diào)查的必要性.
普查是指一個國家或一個地區(qū)專門組織的一次性大規(guī)模的全面調(diào)查,目的是為了詳細地了解某項重要的國情、國力.
普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.
普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.
(二)、抽樣調(diào)查。
【例1和其后的“思考交流”】p8~9。
緊接著,教科書通過例1和“思考交流”的兩個問題,讓學生了解普查有時候難以實現(xiàn).這主要有兩個方面的原因,其一,被調(diào)查對象的量大;其二,普查對被調(diào)查對象本身具有一定的破壞性.這從另一個方面說明了抽樣調(diào)查的必要性.然后,教科書通過抽象概括總結(jié)出抽樣調(diào)查的兩個主要優(yōu)點.
【例2和其后的“思考交流”】p9~10。
主要是討論在抽樣調(diào)查時,什么樣的樣本才具有代表性.在抽樣時,如果抽樣不當,那么調(diào)查的結(jié)果可能會出現(xiàn)與實際情況不符,甚至是錯誤的結(jié)果,導(dǎo)致對決策的誤導(dǎo).在抽樣調(diào)查時,一定要保證隨機性原則,盡可能地避免人為因素的干擾;并且要保證每個個體以一定的概率被抽取到;同時,還要注意到要盡可能地控制抽樣調(diào)查中的.誤差.
由于檢驗對象的量很大,或檢驗對檢驗對象具有破壞性時,通常情況下,所以采用普查的方法有時是行不通的.通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.
抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
解:統(tǒng)計的總體是指該地10000名學生的體重;個體是指這10000名學生中每一名學生的體重;樣本指這10000名學生中抽出的200名學生的體重;總體容量為10000;樣本容量為200.若對每一個個體逐一進行“調(diào)查”,有時費時、費力,有時根本無法實現(xiàn),一個行之有效的辦法就是在每一個個體被抽取的機會均等的前提下從總體中抽取部分個體,進行抽樣調(diào)查.
例2為了制定某市高一、高二、高三三個年級學生校服的生產(chǎn)計劃,有關(guān)部門準備對180名初中男生的身高作調(diào)查,現(xiàn)有三種調(diào)查方案:
a.測量少年體校中180名男子籃球、排球隊員的身高;。
b.查閱有關(guān)外地180名男生身高的統(tǒng)計資料;。
c.在本市的市區(qū)和郊縣各任選一所完全中學,兩所初級中學,在這六所學校有關(guān)年級的小班中,用抽簽的方法分別選出10名男生,然后測量他們的身高.
解:選c方案.理由:方案c采取了隨機抽樣的方法,隨機樣本比較具有代表性、普遍性,可以被用來估計總體.
例3中央電視臺希望在春節(jié)聯(lián)歡晚會播出后一周內(nèi)獲得當年春節(jié)聯(lián)歡晚會的收視率.下面三名同學為電視臺設(shè)計的調(diào)查方案.
甲同學:我把這張《春節(jié)聯(lián)歡晚會收視率調(diào)查表》放在互聯(lián)網(wǎng)上,只要上網(wǎng)登錄該網(wǎng)址的人就可以看到這張表,他們填表的信息可以很快地反饋到我的電腦中.這樣,我就可以很快統(tǒng)計收視率了.
乙同學:我給我們居民小區(qū)的每一份住戶發(fā)一個是否在除夕那天晚上看過中央電視臺春節(jié)聯(lián)歡晚會的調(diào)查表,只要一兩天就可以統(tǒng)計出收視率.
丙同學:我在電話號碼本上隨機地選出一定數(shù)量的電話號碼,然后逐個給他們打電話,問一下他們是否收看了中央電視臺春節(jié)聯(lián)歡晚會,我不出家門就可以統(tǒng)計出中央電視臺春節(jié)聯(lián)歡晚會的收視率.
請問:上述三名同學設(shè)計的調(diào)查方案能夠獲得比較準確的收視率嗎?為什么?
解:綜上所述,這三種調(diào)查方案都有一定的片面性,不能得到比較準確的收視率.
(三)、課堂小結(jié):1、普查是一項非常艱巨的工作,它要對所有的對象進行調(diào)查.當普查的對象很少時,普查無疑是一項非常好的調(diào)查方式.普查主要有兩個特點:(1)所取得的資料更加全面、系統(tǒng);(2)主要調(diào)查在特定時段的社會經(jīng)濟現(xiàn)象總體的數(shù)量.2、通常情況下,從調(diào)查對象中按照一定的方法抽取一部分,進行調(diào)查或觀測,獲取數(shù)據(jù),并以此調(diào)查對象的某項指標做出推斷,這就是抽樣調(diào)查.其中,調(diào)查對象的全體稱為總體,被抽取的一部分稱為樣本.抽樣調(diào)查的優(yōu)點:抽樣調(diào)查與普查相比,有很多優(yōu)點,最突出的有兩點:(1)迅速、及時;(2)節(jié)約人力、物力和財力.
(四)、作業(yè):p10練習題;p10【習題1―2】。
五、教后反思:
高中數(shù)學必修教案篇十一
一、教學目標:
知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義。
過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義。
情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
二、重難點:
教學重點:曲線參數(shù)方程的定義及方法。
教學難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.
三、教學方法:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學.
四、教學過程。
(一)、復(fù)習引入:
1.寫出圓方程的標準式和對應(yīng)的參數(shù)方程。
圓參數(shù)方程(為參數(shù))。
(2)圓參數(shù)方程為:(為參數(shù))。
2.寫出橢圓參數(shù)方程.
(二)、講解新課:
如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),
那么又如何描述直線l上任意點的位置呢?
2、教師引導(dǎo)學生推導(dǎo)直線的參數(shù)方程:
(1)過定點傾斜角為的直線的。
參數(shù)方程。
(為參數(shù))。
【辨析直線的參數(shù)方程】:設(shè)m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.
(2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內(nèi)分點;當且時,m為外分點;當時,點m與q重合。
(三)、直線的參數(shù)方程應(yīng)用,強化理解。
1、例題:
學生練習,教師準對問題講評。反思歸納:
1)求直線參數(shù)方程的方法;。
2)利用直線參數(shù)方程求交點。
2、鞏固導(dǎo)練:
補充:
1)直線與圓相切,那么直線的傾斜角為(a)。
a.或b.或c.或d.或。
2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數(shù))化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得,。
(四)、小結(jié):
(1)直線參數(shù)方程求法;。
(2)直線參數(shù)方程的特點;。
(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
(五)、作業(yè):
補充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為。
【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學反思:
高中數(shù)學必修教案篇十二
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學過程。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學必修教案篇十三
2.教學重點。
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.。
3.教學難點。
函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.。
1.教學有利因素。
2.教學不利因素。
1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.。
為達成課堂教學目標,突出重點,突破難點,我們主要采取以下形式組織學習材料:
(一)創(chuàng)設(shè)情境,引入課題。
問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?
設(shè)函數(shù)的定義域為,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學生類比定義“遞減”,接著推出下圖,讓學生準確回答單調(diào)性.)。
(二)引導(dǎo)探索,生成概念。
問題2:(1)下圖是函數(shù)的圖象(以為例),它在定義域r上是遞增的嗎?
(2)函數(shù)在區(qū)間上有何單調(diào)性?
預(yù)設(shè):學生會不置可否,或者憑感覺猜測,可追問判定依據(jù).。
問題3:(1)如何用數(shù)學符號描述函數(shù)圖象的“上升”特征,即“隨的增大而增大”?
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”改變函數(shù)在區(qū)間上的圖象,可以遞增,可以先增后減,也可以先減后增.。
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動“拖動點”,觀察函數(shù)在區(qū)間上的圖象變化.。
(4)已知,若有。
能保證函數(shù)在區(qū)間上遞增嗎?
設(shè)計說明:可先請持贊同觀點的同學說明理由,再請持反對意見的學生畫出反駁,然后追問:無數(shù)個也不能保證函數(shù)遞增,那該怎么辦呢?若學生回答全部取完或任取,追問“總不能一個一個驗證吧?”
問題4:如何用數(shù)學語言準確刻畫函數(shù)在區(qū)間上遞增呢?
問題5:請你試著用數(shù)學語言定義函數(shù)在區(qū)間上是遞減的.。
(三)學以致用,理解感悟。
判斷題:你認為下列說法是否正確,請說明理由.(舉例或者畫圖)。
(1)設(shè)函數(shù)的定義域為,若對任意,都有,則在區(qū)間上遞增;
(2)設(shè)函數(shù)的定義域為r,若對任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.。
例題:判斷并證明函數(shù)的單調(diào)性.。
高中數(shù)學必修教案篇十四
3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學學習興趣。
重點:理解平面直角坐標中點與數(shù)的一一對應(yīng)關(guān)系;
難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。
教師準備四張大的紙質(zhì)坐標格子。
一、溫故知新,導(dǎo)入新課。
游戲?qū)耄荷弦还?jié)課我們學習了有序數(shù)對,大家學習積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學。
二、新課教學
課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。
學生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小
b說我們可以每個點列一個數(shù)軸???
教師活動:引導(dǎo)學生思考,怎么才能用同一標準,方便的確定每一點的位置?
結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?
得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。
那有了這樣的平面直角坐標系,平面內(nèi)的點就可以用之前學的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)
教師提問2:同學們按照這種做法,在坐標紙上標出b、c、d的坐標。
教師活動:走下講臺,關(guān)注學生的匯坐標過程方法,指出學生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?
教師活動:引導(dǎo)學生思考歸納坐標軸上的點的坐標的特點。
得出結(jié)論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。
三、課程鞏固
師生互動:與學生一起回憶平面直角坐標系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標,以及坐標軸上的點的坐標特點。
“練一練”:
在黑板上貼出四張事先準備好的紙質(zhì)坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應(yīng)的同學上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學生不能提示,提示一次扣2分。比賽看哪組學生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學上黑板來描點。
教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
四、小結(jié)作業(yè):
思考平面直角坐標系中坐標與點的對應(yīng)關(guān)系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。
平面直角坐標系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標軸的交點為平面直角坐標系的原點。
高中數(shù)學必修教案篇十五
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學過程。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習案》作業(yè)十四及十五。
高中數(shù)學必修教案篇十六
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結(jié)合的能力;。
教學重點:型的不等式的解法;。
教學難點:利用絕對值的意義分析、解決問題.
教學過程設(shè)計。
教師活動。
學生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.。
二、新課。
【提問】如何解絕對值方程.。
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習】解下列不等式:
(1);
(2)。
【設(shè)問】如果在中的,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果中的是,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.。
或
由得。
由得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式的解集表示為。
畫出數(shù)軸。
思考答案。
不等式的解集為。
或表示為,或。
筆答。
(1)。
(2),或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程()的解法.。
由淺入深,循序漸進,在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.。
針對解()絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出與()絕對值不等式的教學目標.。
在將看成一個整體的關(guān)鍵處點撥、啟發(fā),使學生主動地進行練習.。
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.。
三、課堂練習。
解下列不等式:
(1);
(2)。
筆答。
(1);
(2)。
檢查教學目標落實情況.。
四、小結(jié)。
的解集是;的解集是。
解絕對值不等式注意不要丟掉這部分解集.。
五、作業(yè)。
1.閱讀課本含絕對值不等式解法.。
2.習題2、3、4。
課堂教學設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學生解題能力的目的.
3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.
高中數(shù)學必修教案篇十七
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學習,學生應(yīng)當達到以下學習目標:
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。
數(shù)學思想方法的教學是中學數(shù)學教學中的重要組成部分,有利于學生加深數(shù)學知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導(dǎo)。本章的兩個主要數(shù)學結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學生已經(jīng)學習了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強數(shù)學思想方法的教學。
加強與前后各章教學內(nèi)容的聯(lián)系,注意復(fù)習和應(yīng)用已學內(nèi)容,并為后續(xù)章節(jié)教學內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數(shù)學知識的學習和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學習的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標準》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學生已經(jīng)學習了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學數(shù)學的最終目的是應(yīng)用數(shù)學,而如今比較突出的兩個問題是,學生應(yīng)用數(shù)學的意識不強,創(chuàng)造能力較弱。學生往往不能把實際問題抽象成數(shù)學問題,不能把所學的數(shù)學知識應(yīng)用到實際問題中去,對所學數(shù)學知識的實際背景了解不多,雖然學生機械地模仿一些常見數(shù)學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學課題,最后把數(shù)學知識應(yīng)用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應(yīng)用舉例(約4課時)
1.3實習作業(yè)(約1課時)
1.要在本章的教學中,應(yīng)該根據(jù)教學實際,啟發(fā)學生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學過程中學生思考問題的方向來啟發(fā)學生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。
2.適當安排一些實習作業(yè),目的是讓學生進一步鞏固所學的知識,提高學生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學語言表達實習過程和實習結(jié)果能力,增強學生應(yīng)用數(shù)學的意識和數(shù)學實踐能力。教師要注意對于學生實習作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
高中數(shù)學必修教案篇十八
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系。
【情感態(tài)度與價值觀】感受數(shù)形結(jié)合的.思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題。
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.。
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—數(shù)軸(板書課題)。
(二)得出定義,揭示內(nèi)涵。
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點。
(2)標正方向。
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫。
(四)動手練習,歸納總結(jié)。
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。
(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學知識。
(五)、歸納小結(jié),強化思想。
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系。
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習題2.21、2、3。
選作第4題。
高中數(shù)學必修教案篇十九
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點。
重點:幾組三角恒等式的應(yīng)用。
難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。