高一數(shù)學(xué)函數(shù)的教案(優(yōu)質(zhì)18篇)

字號:

    教案的編寫是教師教學(xué)的重要環(huán)節(jié),它能夠幫助教師更好地組織教學(xué)過程,提高教學(xué)效果。教案的編寫要注意科學(xué)性和系統(tǒng)性,合理安排教學(xué)活動和教學(xué)步驟。教案的編寫過程可以促進教師對教學(xué)內(nèi)容的理解和教學(xué)策略的選擇。
    高一數(shù)學(xué)函數(shù)的教案篇一
    1.知識技能:
    2.過程與方法。
    3.情感、態(tài)度與價值觀。
    利用函數(shù)的性質(zhì)找出零點找到方程的根.二分法求方程的近似解。
    學(xué)生自主學(xué)習(xí)、合作探究.。
    復(fù)習(xí):
    1.函數(shù)的零點的判定.
    2.二分法求方程的近似解。
    例1.偶函數(shù)在區(qū)間[0,a](a0)上是單調(diào)函數(shù),且f(0)=f(a)0,則方程在區(qū)間[-a,a]內(nèi)根的個數(shù)是()。
    a.1b.2c.3d.0。
    練習(xí):1:已知函數(shù),若實數(shù)是方程的解,且,則的值為()。
    a.恒為正值b.等于c.恒為負值d.不大于。
    2.已知函數(shù),則函數(shù)的零點是__________。
    例2.用“二分法”求方程在區(qū)間內(nèi)的實根,取區(qū)間中點為,那么下一個有根的區(qū)間是。
    練習(xí)2:
    3.利用函數(shù)圖象判斷下列方程有沒有實數(shù)根,有幾個實數(shù)根:
    4借助計算器,用二分法求出在區(qū)間內(nèi)的近似解(精確到)。
    5.設(shè),用二分法求方程內(nèi)近似解的過程中得則方程的根落在區(qū)間()。
    a.b.。
    c.d.不能確定。
    6直線與函數(shù)的圖象的交點個數(shù)為()。
    a.個b.個c.個d.個。
    7若方程有兩個實數(shù)解,則的取值范圍是()。
    a.b.。
    c.d.。
    課后作業(yè):復(fù)習(xí)參考題四a組1?4題。
    高一數(shù)學(xué)函數(shù)的教案篇二
    (1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
    (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認識指數(shù)函數(shù)的性質(zhì).
    (3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如。
    的圖象.
    2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
    3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
    教學(xué)建議。
    教材分析。
    (1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究.
    (2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
    (3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
    教法建議。
    (1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。
    的樣子,不能有一點差異,諸如。
    (2)對底數(shù)。
    的限制條件的理解與認識也是認識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對指數(shù)函數(shù)的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
    關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.
    高一數(shù)學(xué)函數(shù)的教案篇三
    本節(jié)課是選自人教版《高中課程標準實驗教科書》a版必修1第三章第一節(jié)。函數(shù)是中學(xué)數(shù)學(xué)的核心概念,核心的根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系性,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。
    本節(jié)是函數(shù)應(yīng)用的第一課,學(xué)生在系統(tǒng)地掌握了函數(shù)的概念及性質(zhì),基本初等函數(shù)知識后,學(xué)習(xí)方程的根與函數(shù)零點之間的關(guān)系,并結(jié)合函數(shù)的圖象和性質(zhì)來判斷方程的根的存在性及根的個數(shù),從而掌握函數(shù)在某個去件上存在零點的判定方法。為下節(jié)“二分法求方程的近似解”和后續(xù)學(xué)習(xí)的算法提供了基礎(chǔ).因此本節(jié)內(nèi)容具有承前啟后的作用,地位重要。
    對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則.從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。
    根據(jù)本課教學(xué)內(nèi)容的特點以及新課標對本節(jié)課的教學(xué)要求,考慮學(xué)生已有的認知結(jié)構(gòu)與心理特征,我制定以下教學(xué)目標:
    (一)認知目標:
    2.理解零點存在條件,并能確定具體函數(shù)存在零點的區(qū)間.。
    (二)能力目標:
    培養(yǎng)學(xué)生自主發(fā)現(xiàn)、探究實踐的能力.。
    (三)情感目標:
    在函數(shù)與方程的聯(lián)系中體驗數(shù)學(xué)轉(zhuǎn)化思想的意義和價值。
    本著新課程標準的教學(xué)理念,針對教學(xué)內(nèi)容的特點,我確立了如下的教學(xué)重點、難點:
    教學(xué)重點:體會函數(shù)的零點與方程的根之間的聯(lián)系,掌握零點存在的判定條件及應(yīng)用.。
    教學(xué)難點:探究發(fā)現(xiàn)函數(shù)零點的存在性。
    1.通過前面的學(xué)習(xí),學(xué)生已經(jīng)了解一些基本初等函數(shù)的模型,掌握了函數(shù)圖象的一般畫法,及一定的看圖識圖能力,這為本節(jié)課利用函數(shù)圖象,判斷方程根的存在性提供了一定的知識基礎(chǔ)。對于函數(shù)零點的概念本質(zhì)的理解,學(xué)生缺乏的是函數(shù)的觀點,或是函數(shù)應(yīng)用的意識,造成對函數(shù)與方程之間的聯(lián)系缺乏了解。
    (一)創(chuàng)設(shè)情景,提出問題。
    由簡單到復(fù)雜,使學(xué)生認識到有些復(fù)雜的方程用以前的解題方法求解很不方便,需要尋求新的解決方法,讓學(xué)生帶著問題學(xué)習(xí),激發(fā)學(xué)生的求知欲.以學(xué)生熟悉二次函數(shù)圖象和二次方程為平臺,觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實數(shù)根與函數(shù)圖象之間的關(guān)系。培養(yǎng)學(xué)生的歸納能力。理解零點是連接函數(shù)與方程的結(jié)點。
    (二)啟發(fā)引導(dǎo),形成概念。
    利用辨析練習(xí),來加深學(xué)生對概念的理解.目的要學(xué)生明確零點是一個實數(shù),不是一個點。
    引導(dǎo)學(xué)生得出三個重要的等價關(guān)系,體現(xiàn)了“化歸”和“數(shù)形結(jié)合”的數(shù)學(xué)思想,這也是解題的關(guān)鍵。
    (三)初步運用,示例練習(xí)。
    鞏固函數(shù)零點的求法,滲透二次函數(shù)以外的函數(shù)零點情況.進一步體會方程與函數(shù)的關(guān)系。
    (四)討論探究,揭示定理。
    通過小組討論完成探究,教師恰當輔導(dǎo),引導(dǎo)學(xué)生大膽猜想出函數(shù)零點存在性的判定方法。這樣設(shè)計既符合學(xué)生的認知特點,也讓學(xué)生經(jīng)歷從特殊到一般過程。函數(shù)零點的存在性判定定理,其目的就是通過找函數(shù)的零點來研究方程的根,進一步突出函數(shù)思想的應(yīng)用,也為二分法求方程的近似解作好知識上和思想上的準備。
    (四)討論辨析,形成概念。
    引導(dǎo)學(xué)生理解函數(shù)零點存在定理,分析其中各條件的作用,并通過特殊圖象來幫助學(xué)生理解,將抽象的問題轉(zhuǎn)化為直觀形象的圖形,更利于學(xué)生理解定理的本質(zhì).定理不需證明,關(guān)鍵在于讓學(xué)生通過感知體驗并加以確認,有些需要結(jié)合具體的實例,加強對定理進行全面的認識,比如定理應(yīng)用的局限性,即定理的前提是函數(shù)的圖象必須是連續(xù)的,定理只能判定函數(shù)的“變號”零點;定理結(jié)論中零點存在但不一定唯一,需要結(jié)合函數(shù)的圖象和性質(zhì)作進一步的判斷。定理的逆命題不成立。
    (五)觀察感知,例題學(xué)習(xí)。
    引導(dǎo)學(xué)生思考如何應(yīng)用定理來解決相關(guān)的具體問題,接著讓學(xué)生利用計算器完成對應(yīng)值表,然后利用函數(shù)單調(diào)性判斷零點的個數(shù),并借助函數(shù)圖象對整個解題思路有一個直觀的認識。
    (六)知識應(yīng)用,嘗試練習(xí)。
    對新知識的理解需要一個不斷深化完善的過程,通過練習(xí),進行數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,同時反映教學(xué)效果,便于教師進行查漏補缺。
    (七)課后作業(yè),自主學(xué)習(xí)。
    鞏固學(xué)生所學(xué)的新知識,將學(xué)生的思維向外延伸,激發(fā)學(xué)生的發(fā)散思維。
    高一數(shù)學(xué)函數(shù)的教案篇四
    2cos2α=1+cos2α2sin2α=1-cos2α。
    注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
    注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
    (2)對公式會“正用”,“逆用”,“變形使用”;。
    (3)掌握“角的演變”規(guī)律,
    (4)將公式和其它知識銜接起來使用。
    重點難點。
    重點:幾組三角恒等式的應(yīng)用。
    難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式。
    【精典范例】。
    例1已知。
    求證:
    例2已知求的取值范圍。
    分析難以直接用的式子來表達,因此設(shè),并找出應(yīng)滿足的等式,從而求出的取值范圍.
    例3求函數(shù)的值域.
    例4已知。
    且、、均為鈍角,求角的值.
    【選修延伸】。
    例5已知。
    求的值.
    例6已知,
    求的值.
    例7已知。
    求的值.
    例8求值:(1)(2)。
    【追蹤訓(xùn)練】。
    1.等于()。
    a.b.c.d.
    2.已知,且。
    則的值等于()。
    a.b.c.d.
    3.求值:=.
    4.求證:(1)。
    高一數(shù)學(xué)函數(shù)的教案篇五
    一、內(nèi)容與解析(一)內(nèi)容:基本初等函數(shù)習(xí)題課(一)。
    (二)解析:對數(shù)函數(shù)的性質(zhì)的掌握,要先根據(jù)其圖像來分析與記憶,這樣更形像更直觀,這是學(xué)習(xí)圖像與性質(zhì)的基本方法,在此基礎(chǔ)上,我們要對對數(shù)函數(shù)的兩種情況的性質(zhì)做一個比較,使之更好的'掌握.
    二、目標及其解析:
    (一)教學(xué)目標。
    (1)掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念,會作指數(shù)函數(shù)、對數(shù)函數(shù)的圖象,并能根據(jù)圖象說出指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),了解五個冪函數(shù)的圖象及性質(zhì)及其奇偶性.
    (二)解析。
    (1)基本初等函數(shù)的學(xué)習(xí)重要是學(xué)習(xí)其性質(zhì),要掌握好性質(zhì),從圖像上來理解與掌握是一個很有效的辦法.
    (2)每類基本初類函數(shù)的性質(zhì)差別比較大,學(xué)習(xí)時要有一個有效的區(qū)分.
    三、問題診斷分析。
    在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易區(qū)分各函數(shù)的圖像與性質(zhì),不容易抓住其各自的特點。
    四、教學(xué)支持條件分析。
    在本節(jié)課一次遞推的教學(xué)中,準備使用p5。
    高一數(shù)學(xué)函數(shù)的教案篇六
    知識與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會運用定義判斷函數(shù)的奇偶性。
    過程與方法:通過設(shè)置問題情境培養(yǎng)學(xué)生判斷、推斷的能力。
    情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學(xué)生的情操,通過組織學(xué)生分組討論,培養(yǎng)學(xué)生主動交流的合作精神,使學(xué)生學(xué)會認識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
    難點:函數(shù)奇偶性的判斷。
    學(xué)生在獨立思考的基礎(chǔ)上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進行處理,使學(xué)生邊學(xué)邊練,及時鞏固。
    1、復(fù)習(xí)在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義:
    2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
    (1)對于函數(shù),其定義域關(guān)于原點對稱:
    如果______________________________________,那么函數(shù)為偶函數(shù)。
    (2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
    (3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
    (1)f(x)=x4;(2)f(x)=x5;。
    (3)f(x)=x+(4)f(x)=。
    a2、二次函數(shù)()是偶函數(shù),則b=___________。
    b3、已知,其中為常數(shù),若,則。
    _______。
    b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
    (a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
    b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
    c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。
    時,=_______。
    d7、設(shè)是上的奇函數(shù),,當時,,則等于()。
    (a)0.5(b)(c)1.5(d)。
    d8、定義在上的奇函數(shù),則常數(shù)____,_____。
    本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。
    高一數(shù)學(xué)函數(shù)的教案篇七
    1.復(fù)習(xí)因式分解的概念,以及提公因式法,運用公式法分解因式的方法,使學(xué)生進一步理解有關(guān)概念,能靈活運用上述方法分解因式.
    2.通過因式分解綜合練習(xí),提高觀察、分析能力;通過應(yīng)用因式分解方法進行簡便運算,培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的意識.
    高一數(shù)學(xué)函數(shù)的教案篇八
    (1)掌握與()型的絕對值不等式的解法.
    (2)掌握與()型的絕對值不等式的解法.
    (3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
    教學(xué)重點:型的不等式的解法;。
    教學(xué)難點:利用絕對值的意義分析、解決問題.
    教學(xué)過程設(shè)計。
    教師活動。
    學(xué)生活動。
    設(shè)計意圖。
    一、導(dǎo)入新課。
    【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
    【概括】。
    口答。
    二、新課。
    【提問】如何解絕對值方程?.。
    【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
    【練習(xí)】解下列不等式:
    (1)?;
    (2)。
    【設(shè)問】如果在?中的?,也就是?怎樣解?
    【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
    所以,原不等式的解集是。
    【設(shè)問】如果?中的?是?,也就是?怎樣解?
    【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
    或?。
    由?得。
    由?得。
    所以,原不等式的解集是。
    口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
    畫出數(shù)軸,思考答案。
    不等式?的解集表示為。
    畫出數(shù)軸。
    思考答案。
    不等式?的解集為。
    或表示為?,或。
    筆答。
    (1)。
    (2)?,或。
    筆答。
    筆答。
    根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
    由淺入深,循序漸進,在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
    針對解?(?)絕對值不等式學(xué)生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
    落實會正確解出?與?(?)絕對值不等式。
    高一數(shù)學(xué)函數(shù)的教案篇九
    2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
    3、解方程(組),求出待定系數(shù);。
    4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
    例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
    (1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
    分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
    解:(1)設(shè)函數(shù)解析式為y=kx+b.
    (2)當y=0時x=3,當x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
    評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
    高一數(shù)學(xué)函數(shù)的教案篇十
    1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
    2.通過反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問題,解決問題的能力及抽象概括的能力.
    3.通過反函數(shù)的學(xué)習(xí),幫助學(xué)生樹立辨證唯物主義的世界觀.
    重點是反函數(shù)概念的形成與認識.
    難點是掌握求反函數(shù)的方法.
    投影儀。
    自主學(xué)習(xí)與啟發(fā)結(jié)合法。
    一.揭示課題。
    今天我們將學(xué)習(xí)函數(shù)中一個重要的概念----反函數(shù).
    (一)反函數(shù)的概念(板書)。
    二.講解新課。
    教師首先提出這樣一個問題:在函數(shù)中,如果把當作因變量,把當作自變量,能否構(gòu)成一個函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對應(yīng).(還可以讓學(xué)生畫出函數(shù)的圖象,從形的角度解釋“任一對唯一”)。
    學(xué)生很快會意識到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當自變量,當作因變量,在允許取值范圍內(nèi)一個可能對兩個(可畫圖輔助說明,當時,對應(yīng)),不能構(gòu)成函數(shù),說明此函數(shù)沒有反函數(shù).
    通過剛才的例子,了解了什么是反函數(shù),把對的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書上相關(guān)的內(nèi)容.
    1.反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)。
    為了幫助學(xué)生理解,還可以把定義中的換成某個具體簡單的函數(shù)如解釋每一步驟,如得,再判斷它是個函數(shù),最后改寫為.給出定義后,再對概念作點深入研究.
    2.對概念得理解(板書)。
    教師先提出問題:反函數(shù)的“反”字應(yīng)當是相對原來給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來說)。
    學(xué)生很容易先想到對應(yīng)法則是“反”過來的,把與的位置換位了,教師再追問它們的互換還會帶來什么變化?啟發(fā)學(xué)生找出另兩個要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡記為“三定”.
    (1)“三定”(板書)。
    最后教師進一步明確“反”實際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
    (2)“三反”(板書)。
    此時教師可把問題再次引向深入,提出:如果一個函數(shù)存在反函數(shù),應(yīng)怎樣求這個反函數(shù)呢?下面我給出兩個函數(shù),請同學(xué)們根據(jù)自己對概念的理解來求一下它們的反函數(shù).
    例1.求的反函數(shù).(板書)。
    (由學(xué)生說求解過程,有錯或不規(guī)范之處,暫時不追究,待例2解完之后再一起講評)。
    解:由得,所求反函數(shù)為.(板書)。
    例2.求,的反函數(shù).(板書)。
    解:由得,又得,。
    故所求反函數(shù)為.(板書)。
    求完后教師請同學(xué)們作評價,學(xué)生之間可以討論,充分暴露表述中得問題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結(jié)果應(yīng)為,.
    教師可先明知故問,與,有什么不同?讓學(xué)生明確指出兩個函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問從何而來呢?讓學(xué)生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.
    在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過程.
    解:由得,又得,。
    又的值域是,。
    故所求反函數(shù)為,.
    (可能有的學(xué)生會提出例1中為什么不求原來函數(shù)的值域的問題,此時不妨讓學(xué)生去具體算一算,會發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時一致的,所以使得最后結(jié)果沒有出錯.但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時讓學(xué)生調(diào)整例的表述,將過程補充完整)。
    最后讓學(xué)生一起概括求反函數(shù)的步驟.
    3.求反函數(shù)的步驟(板書)。
    (1)反解:。
    (2)互換。
    (3)改寫:。
    對以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習(xí)來檢驗是否真正理解了.
    三.鞏固練習(xí)。
    練習(xí):求下列函數(shù)的反函數(shù).
    (1)(2).(由兩名學(xué)生上黑板寫)。
    解答過程略.
    教師可針對學(xué)生解答中出現(xiàn)的問題,進行講評.(如正負的選取,值域的計算,符號的使用)。
    四.小結(jié)。
    1.對反函數(shù)概念的認識:。
    2.求反函數(shù)的基本步驟:。
    五.作業(yè)。
    課本第68頁習(xí)題2.4第1題中4,6,8,第2題.
    六.板書設(shè)計。
    2.4反函數(shù)例1.練習(xí).
    一.反函數(shù)的概念(1)(2)。
    1.定義。
    2.對概念的理解例2.
    (1)三定(2)三反。
    3.求反函數(shù)的步驟。
    (1)反解(2)互換(3)改寫。
    高一數(shù)學(xué)函數(shù)的教案篇十一
    (二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。
    二、教學(xué)目標及解析。
    (一)教學(xué)目標:
    掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
    (二)解析:
    會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
    三、問題診斷分析。
    在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實際情況進行知識補習(xí),特別是因式分解、二次根式中的分母有理化的補習(xí)。
    在本節(jié)課的教學(xué)中,準備使用(),因為使用(),有利于()。
    高一數(shù)學(xué)函數(shù)的教案篇十二
    數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標體現(xiàn)的更加完美。
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標準實驗教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
    (1).基礎(chǔ)知識目標:理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
    (4).個性品質(zhì)目標:通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
    理解并掌握誘導(dǎo)公式.
    正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
    “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.
    數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
    在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.
    “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.
    在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習(xí)鞏固.讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).
    1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
    2.復(fù)習(xí)任意角的三角函數(shù)定義;。
    3.問題:由,你能否知道sin2100的值嗎?引如新課.
    自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
    1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
    2100與sin300之間有什么關(guān)系.
    由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
    高一數(shù)學(xué)函數(shù)的教案篇十三
    投影儀
    自學(xué)研究與啟發(fā)討論式.
    一、復(fù)習(xí)與引入
    (要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
    提問1.是函數(shù)嗎?
    (由學(xué)生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
    二、新課
    現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
    提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
    (板書)2.2函數(shù)
    一、函數(shù)的概念
    問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
    引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
    2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
    然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
    此時學(xué)生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
    教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
    從映射角度看可以是其中定義域是,值域是.
    3.函數(shù)的三要素及其作用(板書)
    以下關(guān)系式表示函數(shù)嗎?為什么?
    (1);(2).
    解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
    (2)由有意義得,解得.定義域為,值域為.
    由以上兩題可以看出三要素的作用
    (1)判斷一個函數(shù)關(guān)系是否存在.(板書)
    (1);(2) (3);(4).
    解:先認清,它是(定義域)到(值域)的映射,其中
    .
    再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
    (4),法則是不同的;
    而(3)定義域是,值域是,法則是乘2減1,與完全相同.
    (2)判斷兩個函數(shù)是否相同.(板書)
    4.對函數(shù)符號的理解(板書)
    已知函數(shù)試求(板書)
    分析:首先讓學(xué)生認清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進行計算.
    含義1:當自變量取3時,對應(yīng)的函數(shù)值即;
    含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
    計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
    三、小結(jié)
    1.函數(shù)的定義
    2.對函數(shù)三要素的認識
    3.對函數(shù)符號的認識
    四、作業(yè):略
    五、
    2.2函數(shù)例1.例3.
    一.函數(shù)的概念
    1.定義
    2.本質(zhì)例2.小結(jié):
    3.函數(shù)三要素的認識及作用
    4.對函數(shù)符號的理解
    答案:
    高一數(shù)學(xué)函數(shù)的教案篇十四
    (3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.。
    2.通過概念的學(xué)習(xí),使學(xué)生在符號表示,運算等方面的能力有所提高.。
    (1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
    (2)在求定義域中注意運算的合理性與簡潔性.。
    3.通過定義由變量觀點向映射觀點的過渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。
    1.教材分析。
    (1)知識結(jié)構(gòu)。
    (2)重點難點分析。
    是的定義和符號的認識與使用.。
    2.教法建議。
    高一數(shù)學(xué)函數(shù)的教案篇十五
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
    3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
    2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實際問題抽象概括為函數(shù)問題。
    1、理解函數(shù)的概念。
    2、能把實際問題抽象概括為函數(shù)問題。
    一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
    『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
    高一數(shù)學(xué)函數(shù)的教案篇十六
    3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
    利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
    (1). ;(2). ;(3). .
    喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
    由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
    1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
    2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
    遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
    誘導(dǎo)公式(三)、(四)
    給出本節(jié)課的課題
    三角函數(shù)誘導(dǎo)公式
    標題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
    的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
    設(shè)計意圖
    簡便記憶公式.
    求下列三角函數(shù)的值:(1).sin( ); (2). co.
    設(shè)計意圖
    本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負角”化為“正角”是針對具體負角而言的.
    學(xué)生練習(xí)
    化簡: .
    設(shè)計意圖
    重點加強對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
    1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
    2.體會數(shù)形結(jié)合、對稱、化歸的思想.
    3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
    1.課本p-27,第1,2,3小題;
    2.附加課外題 略.
    設(shè)計意圖
    加強學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
    八.課后反思
    對本節(jié)內(nèi)容在進行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。
    然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。
    在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
    高一數(shù)學(xué)函數(shù)的教案篇十七
    2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
    指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
    指數(shù)函數(shù)圖象的平移變換.
    1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
    練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.
    例1解不等式:
    (1);(2);。
    (3);(4).
    小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍.
    例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
    (1);(2);(3);(4).
    小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).
    練習(xí):
    (1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.
    (2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.
    (3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.
    (4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.
    小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
    (5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
    (6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
    小結(jié):函數(shù)圖象的對稱變換規(guī)律.
    例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.
    例4求函數(shù)的最小值以及取得最小值時的x值.
    小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
    練習(xí):
    (1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
    (2)函數(shù)y=2x的值域為;。
    (4)當x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.
    1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
    2.指數(shù)型函數(shù)的定點問題;。
    3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
    課本p55-6,7.
    (1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.
    (2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
    高一數(shù)學(xué)函數(shù)的教案篇十八
    1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。
    (1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。
    (2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
    2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
    3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
    (1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。
    (2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點。
    (3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。
    (1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
    (2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。