多邊形內角和說課稿(優(yōu)質15篇)

字號:

    在現(xiàn)代社會,我們面臨著各種信息和媒體的沖擊和誘惑。深入思考過去的經(jīng)歷和學習,是寫一篇完美總結的前提??偨Y是對過去時光的回顧,是對經(jīng)歷的提煉與總結。寫好一篇總結,可以嘗試運用一些技巧,如對比、歸納、分析等。通過范文的學習,我們可以發(fā)現(xiàn)總結的寫作并非固定的套路,而是要因材施教。
    多邊形內角和說課稿篇一
    知識技能。
    數(shù)學思考。
    1、通過動手實踐、實驗、測量、推理等數(shù)學活動,探索多邊形的外角和公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    2、利用多邊形內角和與外角和公式解決實際問題,讓學生體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、經(jīng)歷多邊形外角和的探索過程,讓學生逐步從實驗幾何過渡到論證幾何。
    解決問題。
    通過探索多邊形外角和的過程和復習多邊形內角和公式,嘗試從不同的角度尋求解決問題的方法并能有效地解決問題。
    情感態(tài)度。
    通過觀察、猜想、推理等數(shù)學活動,感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
    重點。
    (1)多邊形的外角含義;。
    難點。
    教學流程安排。
    活動流程圖。
    活動內容和目的。
    活動一:創(chuàng)設情景,引入新課:。
    問題:將一塊正六邊形紙片如圖(1)所示,。
    思考:?ga1h等于多少度?
    活動二:。
    問題:清晨,小明沿一個五邊形廣場周圍的小路,按逆時針方向跑步。
    (1)小明每從一條街道轉到下一條街道時,身體轉過的角是哪個角?
    (2)他每跑完一圈,身體轉過的角度之和是多少?
    (3)在上圖中,你能求出?1+?2+?3+。
    4+5等于多少嗎你是怎樣得到的。
    設計意圖:學生親自動手將一塊正六邊形紙片如圖(1)所示,做成一個底面仍為正六邊形且高相等的無蓋紙盒(側面均垂直于底面),在活動中體會多邊形內角、多邊形內角和,提高學生學習熱情。
    設計意圖:通過觀察、猜想、推理等數(shù)學活動,感受數(shù)學活動充滿著探索以及數(shù)學結論的`確定性,嘗試從不同的角度尋求解決問題的方法并能有效地解決問題,提高學生學習積極性,讓學生逐步從實驗幾何過渡到論證幾何。
    活動四:。
    練習1:一個多邊形的外角都等于60°,這個多邊形是_______邊形;。
    練習2:一個多邊形的內角都等于120°,這個多邊形是_______幾邊形;。
    練習3:閱讀材料:多邊形邊上或內部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形,圖(1)給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形;請你按照上述方法將圖(2)中的六邊形進行分割,并寫出得到的小三角形的個數(shù),試把這一結論推廣至n邊形。
    圖(1)。
    圖(2)。
    活動五:。
    小結、布置作業(yè)。
    設計意圖:通過探索多邊形外角和的過程和復習多邊形內角和公式,發(fā)展學生的推理能力,讓學生逐步從實驗幾何過渡到論證幾何。
    設計意圖:綜合運用新舊知識解決問題。
    設計意圖:回顧全節(jié)內容,鞏固、提高……。
    多邊形內角和說課稿篇二
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些“想一想”“試一試”“做一做”等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    二,學生情況。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    三,教學目標及重點,難點的確定。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想。
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學難點】轉化的數(shù)學思維方法。
    四,教法和學法。
    本次課改很大程度上借鑒了美國教育家杜威的“在做中學”的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的'好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    五,教學過程設計。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課。
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
    多邊形內角和說課稿篇三
    學生已經(jīng)學完三角形的內角和,對內角和的問題有了一定的認識,加上八年級的學生好奇心、求知欲強,互相評價、互相提問的積極性高、因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,所以把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    二、教學任務分析。
    本節(jié)課是《義務教育課程標準實驗教科書》北師大版八年級上冊第四章第六節(jié)《探索多邊形內角和與外角和》的第一課時、本節(jié)內容是七年級上冊多邊形相關知識的延展和升華,并且在探索學習過程中又與三角形相聯(lián)系,從三角形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,聯(lián)系性比較強,特別是教材中設計了現(xiàn)實情境,“想一想”,“議一議”等內容,體現(xiàn)了課改的精神、在編寫意圖上,編者強調使學生經(jīng)歷探索、猜想、歸納等過程,回歸多邊形的幾何特征,而不是硬背公式,發(fā)展了學生的合情推理能力。
    三、教學目標。
    【過程與方法】經(jīng)歷質疑、猜想、歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的`思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    四、教學重難。
    【教學難點】多邊形定義的理解;多邊形內角和公式的推導;轉化的數(shù)學思維方法的滲透。
    五、教學過程設計。
    本節(jié)課分成七個環(huán)節(jié):
    第一環(huán)節(jié):創(chuàng)設現(xiàn)實情境,提出問題,引入新課;
    第二環(huán)節(jié):概念形成;
    第三環(huán)節(jié):實驗探究;
    第四環(huán)節(jié):思維升華;
    第五環(huán)節(jié):能力拓展;
    第六環(huán)節(jié):課時小結;
    第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié)創(chuàng)設現(xiàn)實情境,提出問題,引入新課。
    1、多媒體展示蜂窩,教師結合圖片讓學生發(fā)現(xiàn)生活中無處不在的多邊形。
    2、工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
    目的:
    1、通過現(xiàn)實情境的展示,調動學生的情緒,激發(fā)起進一步學習的興趣。
    2、把學生的注意力自然的引入研究方向,為課題的研究做鋪墊。
    第二環(huán)節(jié)概念形成。
    1、借助多媒體顯示一多邊形,學生類比三角形的有關知識對多邊形定義、并表示出相應的元素。
    2、教師再給出嚴格規(guī)范的定義,特別借助學具說明“在平面內”的必要性、此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形。
    目的:
    1、對于邊角這些能在圖形中識別而又不要求學生掌握的描述性定義,采取學生類比三角形的表示方法來歸納,滲透類比的數(shù)學思想。
    2、借助于自制的直觀教具,說明多邊形定義中“在平面內”這一條件,易于學生理解,化解了難點。
    多邊形內角和說課稿篇四
    各位領導,各位老師大家下午好,很高興有機會參加這次教學研究活動。
    我的教學設計是華師大版七年級數(shù)學(下)第八章第三節(jié)"多邊形的內角和與外角和"。根據(jù)新的課程標準,我從以下七個方面說一下本節(jié)課的教學設想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想。
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學難點】轉化的數(shù)學思維方法。
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課。
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學生所需掌握的知識目標:即多邊形內角和與外角和定理。
    本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
    多邊形內角和說課稿篇五
    我說課的內容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內角和》的第二課時。我將在新課程理念的指導下從以下七個方面進行說課。
    多邊形的內角和是在三角形內角和知識基礎上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學習多邊形鑲嵌的基礎,也是今后學習空間幾何的基礎,學好多邊形內角和的內容,為學生認識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎,對發(fā)展學生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級,大部分學生來自農村,由于自小獨立性較強,具有較強的理解能力和應用能力,喜歡合作討論,對數(shù)學學習有較濃厚的興趣。大部分學生學習習慣和學習方式較好。
    2、本節(jié)課讓學生通過實驗探索多邊形內角和公式。在此之前學生對三角形、特殊四邊形的內角和已經(jīng)有了一定的理解和認識。估計學生在探究任意四邊形內角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學生學習的難點,在探究的過程中教師要想辦法把難點分散,有利于學生對本課知識的學習和掌握。
    新的課程標準注重學生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標和本節(jié)課的內容特點我確定以下教學目標及重點、難點。
    【知識與技能】。
    【數(shù)學思考】。
    (1)通過測量,類比,推理等教學活動,探索多邊形的內角和公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    (2)通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    【解決問題】。
    通過探索多邊形內角和公式,讓學生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動手實踐、相互間的交流,進一步激發(fā)學習熱情和求知欲望。
    2、體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿探索。并在探索過程中激發(fā)、培養(yǎng)學生的愛國主義熱情。
    基于以上教學目標,我確定以下教學重難點:
    【教學難點】探究多邊形內角和時,如何把多邊形轉化成三角形。
    因此,本節(jié)課我借助課件輔助教學,可以更好的突破重難點,增強直觀效果,豐富學生的感性認識,提高課堂效率。
    本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:
    1.教學方法:
    根據(jù)本節(jié)課的教學目標、教材內容以及學生的認知特點,我采用啟發(fā)式、探索式教學方法,意在幫助學生通過觀察,自己動手,從實踐中獲得知識。整個探究學習的過程充滿了師生之間、學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者,而學生才是學習的主體。
    2.學習方法:
    利用學生的好奇心設疑,解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內容。
    1、環(huán)節(jié)一:創(chuàng)設情景、引入新課。
    情景:請學生觀察“上海世博園”的宣傳視頻。
    從“情境認知理論”得知:圖文加情境能有效提高課堂教學效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學生的愛國主義熱情,并引導學生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內角和是多少?設計這個問題的目的是因為探索多邊形內角和與邊數(shù)關系的根本方法是把多邊形轉化為多個三角形,因此喚醒學生已有知識“三角形內角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內角和是多少?學生回答后進入新課內容,根據(jù)三角形的內角和是個確定值,引導學生猜想任意四邊形的內角和是多少?喚醒學生已有知識,將有助于本堂課問題的解決,也為后面習題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動1:
    猜一猜:圍繞“任意四邊形的內角和等于多少度?”這一問題引導學生從正方形、長方形這兩個特殊的多邊形的內角和,很容易猜測出四邊形的內角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內角和怎么求?你發(fā)現(xiàn)了什么?通過這個問題讓學生自然過渡到用作輔助線的方法求多邊形的內角和,同時也要告訴學生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學生充分的探究時間,鼓勵學生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發(fā)展學生的語言表達能力與推理能力。
    針對不同層次的學生,要適當?shù)囊龑W生利用作輔助線的方法把多邊形轉化為三角形,鼓勵學生尋找多種分割形式,深入領會轉化的本質——將四邊形轉化為三角形問題來解決。然后讓學生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學生體驗數(shù)學活動充滿探索,體驗解決問題策略的多樣性。
    想一想:這些分法有什么異同點?學生積極思考,大膽發(fā)言,教師給予適當?shù)脑u價和鼓勵。教師在學生回答的基礎上小結:借助輔助線把四邊形分割成幾個三角形分割的關鍵在于公共點的選取,并演示公共點在圖形內、外、頂點處。利用三角形內角和求得四邊形內角和,這是數(shù)學學習中的一種常用轉化的思想方法。
    活動2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內角和方法求五邊形、六邊形、七邊形等的內角和,讓學生再一次經(jīng)歷轉化的過程,加深對轉化思想的理解,通過增加圖形的復雜性,再一次經(jīng)歷轉化的過程,加深對轉化思想方法的理解,體會由簡單到復雜,由特殊到一般的思想方法。
    議一議:
    問題1:對比上面探究四邊形內角和的過程,你能得出五邊形的內角和?六邊形的內角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動3:
    嘗試完成第五列n邊形的探究。
    但是學生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內角和求五邊形內角和,由五邊形內角和再求六邊形內角和,依次類推,邊數(shù)每增加1條內角和就增加180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導,給學生正確的評價。在探索的過程中再一次培養(yǎng)學生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學生達到對知識的鞏固與應用,我特地設計了一組(5個)即時搶答題,通過這些題目學生當堂訓練、獨立計算,并根據(jù)學生都喜好競賽的特點,采用搶答式完成。運用所學公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個多邊形一個頂點有10條對角線,則這是邊形.
    (2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是邊形.
    (3)多邊形的內角和隨著邊數(shù)的增加而,邊數(shù)增加一條時它的內角和增加度。
    3、環(huán)節(jié)三:例題講解,知識鞏固。
    在此,我設計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內角和的簡單應用,對于學生來說比較簡單;對于例2我把書后面的85頁習題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學生掌握:三角形、五邊形的內角和,正五邊形等相關知識。
    4、環(huán)節(jié)四:分組競賽、情感升華。
    (1)智慧大比拼。
    內容:p87的練習分成2類。
    通過新穎的形式激發(fā)學生的競爭意識和主動參與活動的熱情。學生利用當堂所學的知識解決問題,鞏固本節(jié)知識。
    (2)拓展探究。
    小組合作探究,引導學生分析可能的每一種截取情況,根據(jù)不同截法得出不同結論。鼓勵學生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學生深刻的感受到合作交流的重要性,體會成功的喜悅。
    (3)情系世博。
    引導學生利用多邊形的內角和公式解釋小明的設想能否實現(xiàn)。讓學生感受到數(shù)學的趣味性,以及與實際生活之間的密切聯(lián)系,并激發(fā)學生的愛國之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請學生談自己學習過程中的收獲,并整理自己參與數(shù)學活動的經(jīng)驗,回味成功的喜悅,形成良好的學習習慣,同時也是給學生正確地評價自己和他人表現(xiàn)的機會,這也是給教者本身一個反思提高的機會。通過這個環(huán)節(jié)使學生這節(jié)課所學的知識系統(tǒng)化,從感性認識上升為理性認識。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習題7.3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內角和定理。
    采用分層布置作業(yè),讓不同水平的學生得到不同的發(fā)展,培養(yǎng)學生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評價學生,不僅僅是一個手段和結果,它對學生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應把握形成性、發(fā)展性評價和終結性評價相結合,在實踐中我打算在課堂上從以下幾個方面進行評價:
    1、評價在學習中各種能力〈如表達、想象、動手、思維、自學能力等〉的發(fā)展情況。
    2、評價學習過程中的創(chuàng)新表現(xiàn)。
    3、評價在學習過程中對身邊事物、社會現(xiàn)實的關注程度。
    評價必須最大限度地考慮最終結果,要以培養(yǎng)學生的榮譽感、自尊心和進取心為目的,使其產(chǎn)生獲取成功的動力。
    最后,我的板書設計力求簡潔明了,便于學生觀察比較、歸納總結,并體現(xiàn)教師的示范作用,突出本堂課的重難點,及主要的思想方法。
    多邊形內角和說課稿篇六
    今天我說課的題目《多邊形及其內角和》,這是我在進行完這節(jié)課的教學后結合著課堂進行情況以及我對《新課程標準理》的理解從以下幾個方面進行的反思。
    《多邊形的內角和》選自人教版八年級上冊的第十一章第三節(jié),《多邊形內角和》是本章的一個重點,是三角形有關知識的拓展,是以后學平面鑲嵌的基礎,多邊形內角和公式的運用還充分體現(xiàn)了圖形與客觀世界的聯(lián)系。在內容上,起著承上啟下的作用,是在學生學習了一元一次方程、三角形內角和知識和多種平面幾何圖形的基礎上進行的,目的是使學生進一步了解多邊形的性質,感受圖形世界的現(xiàn)實性和豐富多彩,同時在教學中滲透類比,轉化等思想方法培養(yǎng)學生用聯(lián)系的變換的觀點思考問題。
    1、我所任教的班級,大部分學生來自農村,基礎知識參差不齊,但從小獨立性較強,性格活潑,喜歡合作討論,對數(shù)學學習有較濃厚的興趣。經(jīng)過了一年的小組合作方式的磨合,大部分學生已經(jīng)養(yǎng)成了良好的學習習慣,具有一定的理解能力和歸納能力。
    2、學生已經(jīng)學習了三角形的內角和,這為本節(jié)課的學習打下了一定的基礎。八年級學生好奇心比較強,觀察能力、動手能力、自主探究能力都得到一定的訓練,所以在探究任意四邊形內角和時學生采用了測量、拼圖、折紙、分割的方法,但是把多邊形轉化為三角形這一過程是學生學習的難點,所以在探究的過程中注重了把難點分散,有利于學生對本課知識的學習和掌握。
    根據(jù)《新課程標準》的要求,本節(jié)內容的特點以及學生的情況,我確定以下教學目標和重、難點。
    【知識與技能】。
    認識多邊形,了解多邊形的定義,多邊形的頂點、邊、對角線、內角及外角等概念;探索并掌握多邊形內角和定理與外角和公式,在理解的基礎上運用其解決簡單的實際問題。
    【數(shù)學思考】。
    學生通過猜想、動手實踐、合作交流,歸納等活動探索多邊形的內角和公式與外角和公式,激發(fā)學生興趣、調動學生積極性、鼓勵學生的的創(chuàng)造性思維,感受數(shù)學思考過程的條理性。
    【問題解決】。
    通過探索多邊形的內角和獲得分析問題和解決問題的一些基本方法,并體驗解決問題方法的多樣性,發(fā)展創(chuàng)新意識,滲透轉化思想在數(shù)學學習中的應用。
    【情感態(tài)度】。
    在數(shù)學學習過程中,體驗學習的快樂、獲得成功的喜悅,激發(fā)對圖形學習的好奇心,形成積極參與數(shù)學活動、主動與他人交流合作的意識。
    【教學難點】探究多邊形內角和時,如何把多邊形轉化成三角形。
    在這節(jié)課的教學中我結合了學生的實際情況和教學目標,借鑒了美國教育學家杜威的“做中學”的教育理論,運用了如下的教學方法。
    1.教學方法:
    根據(jù)新課成標準,教師教學應該以學生的認知發(fā)展水平和已有的經(jīng)驗為基礎、面向全體學生,注重啟發(fā)式和因材施教。教師要發(fā)揮主導作用,處理好講授與學生自主學習的關系,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數(shù)學知識與技能,體會和運用數(shù)學思想和方法,獲得基本的數(shù)學活動經(jīng)驗。整個探究學習的過程充滿了師生之間、學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者,合作者,而學生才是學習的主體。
    2.學習方法:
    學生的學習應當是一個生動活潑的、主動的和富有個性的過程。所以利用學生的好奇心設疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,在學生在經(jīng)歷觀察、實驗、猜測、推理、驗證等活動過程中,體會了數(shù)學學習方法,體驗到了自主探索和合作交流快樂,更好更準確的理解和掌握了本節(jié)課的內容。
    環(huán)節(jié)一:創(chuàng)設情景、引入新課。
    問題情景:將一張正方形卡片剪一刀,剩下的卡片是什么圖形呢?
    做一做:讓學生拿出準備好的紙片和剪刀動手操作,并讓學生展示自己剪出的圖形。學生展示以下幾種圖形?(圖)同時老師指出這些圖形就是我們今天要研究的多邊形。(意圖是:通過動手操作,激發(fā)了學生的興趣,學生體會到了圖形之間具有一定的聯(lián)系,順理成章引出本節(jié)課的學習內容,符合學生的心里特征和認知規(guī)律,調動學生積極性,發(fā)展學生的創(chuàng)新意識。為整堂課的學習打下了基礎)然后讓學生自學多邊形的定義,邊,[x10]頂點,對角線,和內角,外角的概念以及凸多形的知識。
    問題:三角形內角和是多少?(設計這個問題的目的是:因為探索多邊形內角和的根本方法是把多邊形轉化為多個三角形,因此喚醒學生已有知識“三角形內角和等于180°”有助于解決后面的問題。),那么我們剪出的圖形內角和是多少呢?與三角形有什么聯(lián)系呢?(設計這個問題的目的是:使學生的興趣轉化為期待,進入下一個環(huán)節(jié)。)。
    環(huán)節(jié)二、動手操作、激發(fā)欲望。
    活動1:做一做:讓學生用剪出的多邊形紙片探四邊形內角和。
    (這一個環(huán)節(jié)我采取了小組合作的方式,給了學生充分的探究時間,鼓勵學生積極參與,合作交流,學生在探究過程中采用了測量、拼圖、折紙和做輔助線等多種方法,同時告訴學生測量、剪拼等活動可能會產(chǎn)生誤差,由此讓學生感覺到做輔助線在解決幾何問題中的必要性。)。
    針對不同層次的學生,,適當?shù)囊龑W生利用作輔助線的方法把多邊形轉化為三角形,鼓勵學生尋找多種分割方法,深入領會轉化的本質——將四邊形轉化為三角形問題來解決。然后讓學生自己到黑板上展示自己的解決辦法[x14]。
    想一想:這些分法有什么異同點?學生積極思考,大膽發(fā)言,教師給予適當?shù)脑u價和鼓勵。教師在學生回答的基礎上小結:借助輔助線把四邊形分割成幾個三角形分割的關鍵在于公共點的選取,并演示公共點在圖形內、邊上、頂點處。同時指出求多邊形的內角和的方法[x15]是一樣的,都是把多邊形轉化為三角形。
    (這些活動的設計意圖是:讓學生通過猜想、動手操作、合作交流等數(shù)學活動獲得知識,真正體會“做中學”的快樂,激發(fā)學生的學習興趣、調動學生積極性、引發(fā)學生的數(shù)學思考,鼓勵學生的的創(chuàng)造性思維,培養(yǎng)學生良好的數(shù)學學習習慣,并讓學生在學習過程中,體驗獲得成功的樂趣,激發(fā)對圖形學習的好奇心,形成積極參與數(shù)學活動、主動與他人交流合作的意識。)。
    活動2:讓學生利用方法1填表:
    圖形。
    能分成三角形的個數(shù)。
    (在教學過程中并沒有告訴學生結論,而是采用讓學生探索歸納、化未知為已知,自己去嘗試從而培養(yǎng)學生的創(chuàng)新能力。)。
    環(huán)節(jié)三:鞏固新知、知識共享。
    例題展示:
    例2:一個正多邊形的一個內角為150°,你知道它是幾邊形嗎?
    例3:一個多邊形的內角和等于它的外角和的3倍,它是幾邊形?(設計這些例題的目的是鞏固和應用內角和與外角和公式)。
    小試牛刀(這里利用學生喜歡競賽的特征,我采用了分組展示,分組計分的形式,這樣能夠激發(fā)學生的學習興趣,并能培養(yǎng)學生的合作意識和團隊精神)。
    (3)一個多邊形的每個外角都等于60°,它是邊形。
    環(huán)節(jié)四:回歸情景、能力提升。
    將一個六邊形截去一個三角形后,內角和是多少呢?這一環(huán)節(jié)我仍然采用的小組合作的形式,讓學生動手畫圖,合作交流,分組展示。
    (學生通過課前的動手活動對問題情景中的問題已經(jīng)得到解決辦法,類比四邊形學生通過動手操作,合作交流,互相驗證得出六邊形的解決方法,設計這道題的意圖是:滲透類比思想在數(shù)學學習中的運用,體會數(shù)學學習方法的重要性。)。
    環(huán)節(jié)五:暢所欲言、分享成果。
    請學生談談自己學習過程中的收獲,并整理自己參與數(shù)學活動的經(jīng)驗,回味成功的喜悅,形成良好的學習習慣,通過這個環(huán)節(jié)使學生這節(jié)課所學的知識系統(tǒng)化。
    最后用多媒體展示多邊形圖片結束本節(jié)課。(目的是讓學生感受現(xiàn)實中多邊形的豐富多彩和給我們的生活帶來的美感)。
    多邊形內角和說課稿篇七
    各位評委、各位老師:
    大家好!我是來自錢場中學的陳芬老師。我說課的內容是人教版義務教育課程標準實驗教科書,七年級數(shù)學(下)第七章第三節(jié)《多邊形的內角和》。
    下面,我從以下幾個方面對本節(jié)課的教學設計進行說明。
    一、教材分析。
    1、教材的地位和作用。
    本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內容上,從三角形的.內角和到多邊形的內角和,再將內角和公式應用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會從簡單到復雜,從特殊到一般和轉化等重要的思想方法。
    2、教學重點和難點。
    二、教學目標分析。
    2、數(shù)學思考:能感受數(shù)學思考過程的條理性,發(fā)展能力推理和語言表達能力,并體會從特殊到一般的認識問題的方法。
    3、解決問題:讓學生嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題。
    4、情感態(tài)度:讓學生體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿探索和創(chuàng)造。
    三、教法和學法分析。
    本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:
    1、教學方法的設計。
    我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
    2、活動的開展。
    利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內容。
    3、現(xiàn)代教育技術的應用。
    我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。
    多邊形內角和說課稿篇八
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內容上,從三角形的內角和到四邊形的內角和到多邊形的內角和環(huán)環(huán)相扣,前面的知識為后邊的知識做了鋪墊,知識聯(lián)系性比較強,特別是教材中設計了一些"想一想""試一試""做一做"等內容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學生的合情推理能力。
    學生上節(jié)課剛剛學完三角形的內角和,對內角和的問題有了一定的認識,加上七年級的學生具有好奇心,求知欲強,互相評價互相提問的積極性高。因此對于學習本節(jié)內容的知識條件已經(jīng)成熟,學生參加探索活動的熱情已經(jīng)具備,因此把這節(jié)課設計成一節(jié)探索活動課是切實可行的。
    【知識與技能】掌握多邊形內角和與外角和定理,進一步了解轉化的數(shù)學思想
    【過程與方法】經(jīng)歷質疑,猜想,歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法。
    【情感態(tài)度與價值觀】讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造。
    【教學重點】多邊形內角和及外角和定理
    【教學難點】轉化的數(shù)學思維方法
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學"的理論,突出學生獨立數(shù)學思考活動,希望通過活動使學生主動探索,實踐,交流,達到掌握知識的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動課,按新的課程理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"及初一學生的特點,我確定如下教法和學法。
    【課堂組織策略】利用學生的好奇心,設疑,解疑,組織活潑互動,有效的教學活動,鼓勵學生積極參與,大膽猜想,積極思考,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關內容。
    【學生學習策略】明確學習目標,在教師的組織,引導,點撥下進行主動探索,實踐,交流等活動。
    【輔助策略】利用多媒體課件展示三角形內角和向多邊形內角和轉化,突破這一教學難點,另外利用演示法,歸納法,討論法,分組竟賽法,使不同學生的知識水平得到恰當?shù)陌l(fā)展和提高。
    整個教學過程分五步完成。
    1,創(chuàng)設情景,引入新課
    首先解決四邊形內角的問題,通過轉化為三角形問題來解決。
    2,合作交流,探索新知。
    更進一步解決五邊形內角和,乃至六邊形,七邊形直到n邊形的內角和,都能用同樣的方法解決。學生分組討論。
    3,歸納總結,建構體系。
    多邊形內角和已得出,對外角和更是水到渠成,這時要適當?shù)目偨Y,讓學生自己得到零散的知識體系。
    4,實際應用,提高能力。
    5,分組競賽,升華情感
    四組不同難度的電子試卷,既鞏固本節(jié)課所學的知識,又使學生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學生所需掌握的知識目標:即多邊形內角和與外角和定理
    本節(jié)課在知識上由簡單到復雜,學生經(jīng)歷質疑,猜想,驗證的同時,在情感上,由好奇到疑惑,由解決單個問題的一點點快感,到解決整個問題串的極大興奮,產(chǎn)生了強烈的學習激情。這時,一次有效的教學競賽活動,使學生的學習激情得到釋放,學科個性得以張揚,教師稍加點撥,適可而止,把更多的思考空間留給學生。
    多邊形內角和說課稿篇九
    二、教學目標。
    2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
    3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結論的確定性,提高學生學習熱情。
    三、教學重、難點。
    難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
    四、教學方法:引導發(fā)現(xiàn)法、討論法。
    五、教具、學具。
    教具:多媒體課件。
    學具:三角板、量角器。
    六、教學媒體:大屏幕、實物投影。
    七、教學過程:
    (一)創(chuàng)設情境,設疑激思。
    師:大家都知道三角形的內角和是180o,那么四邊形的內角和,你知道嗎?
    在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內角和是360o。
    方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360o。
    接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
    師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學生先獨立思考每個問題再分組討論。
    關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
    (2)學生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180o的和是540o。
    方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
    交流后,學生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內角和嗎?
    思考:(1)多邊形內角和與三角形內角和的關系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
    學生結合思考題進行討論,并把討論后的結果進行交流。
    發(fā)現(xiàn)1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
    (三)實際應用,優(yōu)勢互補。
    (2)一個多邊形的內角和是1440o,且每個內角都相等,則每個內角的度數(shù)是()。
    (四)概括存儲。
    學生自己歸納總結:
    2、運用轉化思想解決數(shù)學問題。
    3、用數(shù)形結合的思想解決問題。
    (五)作業(yè):練習冊第93頁1、2、3。
    多邊形內角和說課稿篇十
    過程與方法目標:通過多邊形內角和公式的推導過程,提高邏輯思維能力。
    情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。
    教學重點:多邊形的內角和公式
    教學難點:多邊形內角和公式
    講解法、練習法、分小組討論法
    結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、
    生成新知、深化新知、鞏固新知、小結作業(yè)。
    1. 導入新知
    首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內角和,緊接著提出問題:四邊形的
    內角和是多少?五邊形的內角和是多少?六邊形的內角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內角和(板書)。
    通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內角和的學習奠定了基礎。
    2. 生成新知
    接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內角和,由此
    得出四邊形的內角和是2個三角形的內角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的內角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內角和公式180*(n-2)。
    驗證:七邊形驗證
    在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求
    內角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調我們分隔的一個原則。
    本環(huán)節(jié)的設計主要是對多變形內角和的一個深入了解,給學生一個內化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領學生用我們所學過的多邊形的內角和公式來解決生活中的實際問題。
    我會在ppt上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內角和公式進一步鞏固提高。
    5. 小結作業(yè)
    先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。
    多邊形內角和說課稿篇十一
    通過用不同方法分割四邊形為三角形,探索四邊形的內角和。
    通過類比四邊形內角和的得出方法,探索其他多邊形的內角和,發(fā)展學生的推理能力。
    梳理所學知識,達到鞏固發(fā)展和提高的目的。
    教學過程設計。
    問題與情景。
    師生行為。
    設計意圖。
    設計情景:什么是正多邊形?
    正八邊形有什么特點?
    你會畫邊長為3cm的正八邊形嗎?
    學生思考并回答問題。
    學生不會畫八邊形,畫八邊形需要知道它的每一個內角,怎么就能知道八邊形的每一個內角,就是今天要解決的.問題,以此來激發(fā)學生的學習興趣和求知欲。
    活動1、
    在練習本畫出任意四邊形,五邊星,六邊形,七邊形。
    分組讓學生量出每一個多邊形的內角并求出他們的內角和,教師在黑板上畫這四個四邊形。
    活動2(重點)(難點)。
    多邊形內角和說課稿篇十二
    有幸聆聽了宋老師執(zhí)教的《簡單多邊形的面積》一課,聽課后讓我感覺自己要學的還很多。簡單多邊形的面積計算概念比較抽象,是對學過的基本平面圖形面積的整合。本節(jié)課宋老師為學生提供了充足的自主學習的空間和時間,設置了“平面圖形面積復習”、“組合圖形面積學習”、“知識的應用與拓展”三個板塊,從學生實際出發(fā),創(chuàng)造性地使用教材,注重發(fā)展學生的個性,培養(yǎng)學生的能動性。在我們華杰學校新課改背景下,在“學生是課堂的主人”的課堂教學中,本課教學中,宋老師更多地體現(xiàn)為:引導者——給學生的學習提供明確的導航目標,組織者——為學生提供各種便利與支持,使學生能夠比較輕松地完成學習任務。聽課后我個人認為主要有以下幾方面的亮點:
    組合多邊形的面積計算,需要在長方形、正方形、平行四邊形、三角形和梯形面積計算的基礎上進行。宋老師在學習新知之前,放手讓學生引領復習,這樣的設計,既激發(fā)了學生的學習興趣,又能體現(xiàn)從學生的已有經(jīng)驗和知識背景,找準新知的最佳切入點,為知識的遷移做好鋪墊。
    各個小組的展示使學生主動參與學習活動,不但能使學生主動獲取知識,促進知識的意義建構,更能培養(yǎng)學生的參與意識和創(chuàng)新精神。在教學“簡單多邊形的面積計算”時,宋老師先留給學生充分的時間和空間,讓學生在自己動手、動腦的基礎上,再引導學生交流、驗證自己的想法,看看自己沒想到的方法有哪些,根據(jù)自己的能力有選擇地學習其它方法,一步步激發(fā)學生創(chuàng)造的欲望:我有不同的分割法。這樣有序的學習,不僅發(fā)展了學生的智能,而且提高了學生的素質。
    宋老師讓學生自主選擇求組合圖形的面積,自主選擇圖形的分割法或拼補法,讓學生經(jīng)歷組合圖形面積計算的探究過程,通過宋老師的點撥概括,培養(yǎng)了學生分析、解決實際問題的能力,學生的學習過程積極主動。
    數(shù)學與人類的生活息息相關,它來源于生活,又應用于生活。本節(jié)課中,宋老師緊密聯(lián)系學生的實際經(jīng)驗,通過讓學生計算學校的草坪和所住的小區(qū)平面圖的面積,激發(fā)了學生對數(shù)學學習的興趣,幫助學生更好地應用所學的知識。這樣,不僅使學生感受到數(shù)學就在身邊,激發(fā)學生從生活中尋找數(shù)學問題的興趣,也培養(yǎng)了學生提出問題,解決問題的能力。
    思考:
    1.全課宋老師都沒有引導學生比較分割圖形越簡潔,其解題方法也將越簡單的,同時又要考慮分割的圖形與所給的條件的關系,有些分割后的圖形難于找到相關的條件,那么這樣的分割方法就是失敗的。其實這就是在交給學生解決問題的方法和策略怎樣是簡潔高效的。
    2.新課例題與拓展題區(qū)別不大,是不是應該讓學生采用自己喜歡的方法求組合圖多邊形的面積,一節(jié)課就2道題目是不是有些不合適。
    多邊形內角和說課稿篇十三
    教學目標。
    知識技能。
    數(shù)學思考。
    1、通過測量、類比、推理等數(shù)學活動,探索多邊形的內角和的公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
    2、通過把多邊形轉化成三角形體會轉化思想在幾何中的應用,同時。
    時讓學生體會從特殊到一般的認識問題的方法。
    3、通過探索多邊形內角和公式,讓學生逐步從實驗幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學問題的探究,進一步提高學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,感受數(shù)學活動的重要意義和合作成功的喜悅,提高學生學習的熱情。
    重點。
    難點。
    在探索多邊形的內角和時,如何把多邊形轉化成三角形。
    知識聯(lián)系。
    多邊形的對角線和三角形的內角和為本節(jié)課的知識做了鋪墊,本節(jié)課的內容為多邊形的外角和做知識上的準備。
    知識背景。
    對多邊形在生活中有所認識。
    學習興趣。
    通過探究過程更能激發(fā)學生學習的興趣。
    教學工具。
    三角板和幾何畫板。
    教學流程設計。
    活動流程圖。
    活動內容和目的。
    活動一,教師和學生任意畫幾個多邊形,用量角器測其內角和。
    多邊形內角和說課稿篇十四
    4、培養(yǎng)學生合作、表達等能力情感。
    教學重點與難點:多邊形內角和與外角和特點是重點。
    利用化歸思想歸納多邊形內角和與外角和特點是難點。
    教學過程:
    一、創(chuàng)設情境。
    師出示一個三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內角和與外角和)。
    多邊形內角和說課稿篇十五
    把活動2和3中的結論寫下來,進行對比分析,進一步猜想和推導任意多邊形的內角和,教師作總結性的結論,并且用動畫演示多邊形隨著邊數(shù)的增加其內角和的變化過程。
    活動5、畫一個邊長為3cm的八邊形。
    讓學生在練習本上畫一個邊長為3cm的八邊形,教師進行評價和展示。
    活動6、小結和布置作業(yè)。
    師生共同回顧本節(jié)所學過的內容。