2023年多邊形的內(nèi)角和的說課稿(匯總22篇)

字號:

    總結(jié)可以幫助我們更好地規(guī)劃未來的目標(biāo)和計(jì)劃。如何發(fā)展個(gè)人品牌,提升個(gè)人影響力?總結(jié)是一個(gè)反思和總結(jié)的過程,我們要通過總結(jié)來發(fā)現(xiàn)問題、解決問題,進(jìn)一步提高自己的能力和水平。
    多邊形的內(nèi)角和的說課稿篇一
    各位領(lǐng)導(dǎo),各位老師大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。
    我的教學(xué)設(shè)計(jì)是華師大版七年級數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說一下本節(jié)課的教學(xué)設(shè)想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個(gè)教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。
    4,實(shí)際應(yīng)用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理。
    本節(jié)課在知識(shí)上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    多邊形的內(nèi)角和的說課稿篇二
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個(gè)教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。
    4,實(shí)際應(yīng)用,提高能力。
    5,分組競賽,升華情感
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理
    本節(jié)課在知識(shí)上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    多邊形的內(nèi)角和的說課稿篇三
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些“想一想”“試一試”“做一做”等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    二,學(xué)生情況。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    三,教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定。
    【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    四,教法和學(xué)法。
    本次課改很大程度上借鑒了美國教育家杜威的“在做中學(xué)”的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的'好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    五,教學(xué)過程設(shè)計(jì)。
    整個(gè)教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。
    4,實(shí)際應(yīng)用,提高能力。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    多邊形的內(nèi)角和的說課稿篇四
    我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。
    多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
    2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對本課知識(shí)的學(xué)習(xí)和掌握。
    新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
    【知識(shí)與技能】。
    【數(shù)學(xué)思考】。
    (1)通過測量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
    (2)通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    【解決問題】。
    通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
    2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
    基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
    【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。
    本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:
    1.教學(xué)方法:
    根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
    2.學(xué)習(xí)方法:
    利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
    1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
    情景:請學(xué)生觀察“上海世博園”的宣傳視頻。
    從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動(dòng)1:
    猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。
    針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問題策略的多樣性。
    想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
    活動(dòng)2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的理解,體會(huì)由簡單到復(fù)雜,由特殊到一般的思想方法。
    議一議:
    問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動(dòng)3:
    嘗試完成第五列n邊形的探究。
    但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動(dòng)3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學(xué)生達(dá)到對知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對角線,則這是邊形.
    (2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形.
    (3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時(shí)它的內(nèi)角和增加度。
    3、環(huán)節(jié)三:例題講解,知識(shí)鞏固。
    在此,我設(shè)計(jì)了2個(gè)例題,并對教科書上的例題作了較小的改動(dòng),書上的例1簡略講解,這個(gè)例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。
    4、環(huán)節(jié)四:分組競賽、情感升華。
    (1)智慧大比拼。
    內(nèi)容:p87的練習(xí)分成2類。
    通過新穎的形式激發(fā)學(xué)生的競爭意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問題,鞏固本節(jié)知識(shí)。
    (2)拓展探究。
    小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。
    (3)情系世博。
    引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習(xí)題7.3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
    采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對課程的評價(jià)應(yīng)把握形成性、發(fā)展性評價(jià)和終結(jié)性評價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評價(jià):
    1、評價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。
    2、評價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
    3、評價(jià)在學(xué)習(xí)過程中對身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。
    評價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。
    最后,我的板書設(shè)計(jì)力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。
    多邊形的內(nèi)角和的說課稿篇五
    學(xué)生已經(jīng)學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識(shí),加上八年級的學(xué)生好奇心、求知欲強(qiáng),互相評價(jià)、互相提問的積極性高、因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,所以把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    本節(jié)課是《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》北師大版八年級上冊第四章第六節(jié)《探索多邊形內(nèi)角和與外角和》的第一課時(shí)、本節(jié)內(nèi)容是七年級上冊多邊形相關(guān)知識(shí)的延展和升華,并且在探索學(xué)習(xí)過程中又與三角形相聯(lián)系,從三角形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了現(xiàn)實(shí)情境,“想一想”,“議一議”等內(nèi)容,體現(xiàn)了課改的精神、在編寫意圖上,編者強(qiáng)調(diào)使學(xué)生經(jīng)歷探索、猜想、歸納等過程,回歸多邊形的幾何特征,而不是硬背公式,發(fā)展了學(xué)生的合情推理能力。
    【知識(shí)與技能】掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑、猜想、歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】多邊形定義的理解。多邊形內(nèi)角和公式的推導(dǎo)。轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透。
    本節(jié)課分成七個(gè)環(huán)節(jié):
    第一環(huán)節(jié):創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問題,引入新課。
    第二環(huán)節(jié):概念形成。
    第三環(huán)節(jié):實(shí)驗(yàn)探究。
    第四環(huán)節(jié):思維升華。
    第五環(huán)節(jié):能力拓展。
    第六環(huán)節(jié):課時(shí)小結(jié)。
    第七環(huán)節(jié):布置作業(yè)。
    1、多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多邊形。
    2、工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?
    1、通過現(xiàn)實(shí)情境的展示,調(diào)動(dòng)學(xué)生的情緒,激發(fā)起進(jìn)一步學(xué)習(xí)的興趣。
    2、把學(xué)生的注意力自然的引入研究方向,為課題的研究做鋪墊。
    1、借助多媒體顯示一多邊形,學(xué)生類比三角形的有關(guān)知識(shí)對多邊形定義、并表示出相應(yīng)的元素。
    2、教師再給出嚴(yán)格規(guī)范的定義,特別借助學(xué)具說明“在平面內(nèi)”的必要性、此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形。
    1、對于邊角這些能在圖形中識(shí)別而又不要求學(xué)生掌握的描述性定義,采取學(xué)生類比三角形的表示方法來歸納,滲透類比的數(shù)學(xué)思想。
    2、借助于自制的直觀教具,說明多邊形定義中“在平面內(nèi)”這一條件,易于學(xué)生理解,化解了難點(diǎn)。
    (以四人小組為單位展開探究活動(dòng))。
    提出問題:三角形的內(nèi)角和為180°,那么多邊形的內(nèi)角和是多少度呢?從四邊形開始研究。
    要求:先獨(dú)立思考再小組合作交流完成)。
    (師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥)。
    (生思考后交流,把不同的方案在紙上完成)。
    多邊形的內(nèi)角和的說課稿篇六
    我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。
    多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
    1、我所任教的班級,大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
    2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對本課知識(shí)的學(xué)習(xí)和掌握。
    新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
    【知識(shí)與技能】。
    【數(shù)學(xué)思考】。
    (1)通過測量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
    (2)通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    【解決問題】。
    通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
    【情感態(tài)度】。
    1、通過動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
    2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
    基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
    【教學(xué)重點(diǎn)】。
    【教學(xué)難點(diǎn)】。
    探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。
    本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:
    1、教學(xué)方法:
    根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
    2、學(xué)習(xí)方法:
    利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
    1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
    情景:請學(xué)生觀察“上海世博園”的宣傳視頻。
    從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
    2、環(huán)節(jié)二:合作交流、探索新知。
    活動(dòng)1:
    猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
    議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。
    針對不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問題策略的多樣性。
    想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
    活動(dòng)2:
    做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的.理解,體會(huì)由簡單到復(fù)雜,由特殊到一般的思想方法。
    議一議:
    問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
    問題2:能否采用不同的分割方法來解決這些問題?
    活動(dòng)3:
    嘗試完成第五列n邊形的探究。
    但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動(dòng)3公式的得出帶來困難。所以教師要因勢利導(dǎo),給學(xué)生正確的評價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。
    練一練:為了使學(xué)生達(dá)到對知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。
    搶答:
    (1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對角線,則這是邊形。
    (2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形。
    (5)一個(gè)多邊形的內(nèi)角和等于720度,那么這個(gè)多邊形是邊形。
    3、環(huán)節(jié)三:例題講解,知識(shí)鞏固。
    在此,我設(shè)計(jì)了2個(gè)例題,并對教科書上的例題作了較小的改動(dòng),書上的例1簡略講解,這個(gè)例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學(xué)生來說比較簡單;對于例2我把書后面的85頁習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。
    4、環(huán)節(jié)四:分組競賽、情感升華。
    (1)智慧大比拼。
    內(nèi)容:p87的練習(xí)分成2類。
    通過新穎的形式激發(fā)學(xué)生的競爭意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問題,鞏固本節(jié)知識(shí)。
    (2)拓展探究。
    小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。
    (3)情系世博。
    引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國之情。
    5、環(huán)節(jié)五:暢所欲言、分享成果。
    請學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。
    6、環(huán)節(jié)六:布置作業(yè)、課后提升。
    (1)習(xí)題7。3第2題、第4題。
    (2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
    采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
    評價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對課程的評價(jià)應(yīng)把握形成性、發(fā)展性評價(jià)和終結(jié)性評價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評價(jià):
    1、評價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。
    2、評價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
    3、評價(jià)在學(xué)習(xí)過程中對身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。
    評價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。
    最后,我的板書設(shè)計(jì)力求簡潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。
    板書設(shè)計(jì):
    以上是我對本節(jié)課的設(shè)計(jì)說明,從說教材、說學(xué)情、說教法、說學(xué)法、說教學(xué)程序上說明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教。我的說課到此結(jié)束,謝謝大家。
    多邊形的內(nèi)角和的說課稿篇七
    教學(xué)目標(biāo)。
    知識(shí)與技能。
    掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.
    過程與方法。
    2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.
    情感態(tài)度價(jià)值觀。
    通過猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.
    重點(diǎn)。
    多邊形的內(nèi)角和的說課稿篇八
    二、教學(xué)目標(biāo)。
    2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標(biāo):通過猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
    三、教學(xué)重、難點(diǎn)。
    難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實(shí)物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?
    在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
    方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360o。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個(gè)三角形,3個(gè)180o的和是540o。
    方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180o的和減去一個(gè)周角360o。結(jié)果得540o。
    方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180o的和減去一個(gè)平角180o,結(jié)果得540o。
    方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180o加上360o,結(jié)果得540o。
    交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個(gè)頂點(diǎn)引的對角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180o的和,五邊形內(nèi)角和是3個(gè)180o的和,六邊形內(nèi)角和是4個(gè)180o的和,十邊形內(nèi)角和是8個(gè)180o的和。
    發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個(gè)多邊形的內(nèi)角和是1440o,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
    (四)概括存儲(chǔ)。
    學(xué)生自己歸納總結(jié):
    2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    多邊形的內(nèi)角和的說課稿篇九
    本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
    二、教學(xué)目標(biāo)。
    2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
    4、情感態(tài)度目標(biāo):通過猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
    三、教學(xué)重、難點(diǎn)。
    多邊形的內(nèi)角和的說課稿篇十
    今天我說課的題目《多邊形及其內(nèi)角和》,這是我在進(jìn)行完這節(jié)課的教學(xué)后結(jié)合著課堂進(jìn)行情況以及我對《新課程標(biāo)準(zhǔn)理》的理解從以下幾個(gè)方面進(jìn)行的反思。
    《多邊形的內(nèi)角和》選自人教版八年級上冊的第十一章第三節(jié),《多邊形內(nèi)角和》是本章的一個(gè)重點(diǎn),是三角形有關(guān)知識(shí)的拓展,是以后學(xué)平面鑲嵌的基礎(chǔ),多邊形內(nèi)角和公式的運(yùn)用還充分體現(xiàn)了圖形與客觀世界的聯(lián)系。在內(nèi)容上,起著承上啟下的作用,是在學(xué)生學(xué)習(xí)了一元一次方程、三角形內(nèi)角和知識(shí)和多種平面幾何圖形的基礎(chǔ)上進(jìn)行的,目的是使學(xué)生進(jìn)一步了解多邊形的性質(zhì),感受圖形世界的現(xiàn)實(shí)性和豐富多彩,同時(shí)在教學(xué)中滲透類比,轉(zhuǎn)化等思想方法培養(yǎng)學(xué)生用聯(lián)系的變換的觀點(diǎn)思考問題。
    1、我所任教的班級,大部分學(xué)生來自農(nóng)村,基礎(chǔ)知識(shí)參差不齊,但從小獨(dú)立性較強(qiáng),性格活潑,喜歡合作討論,對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。經(jīng)過了一年的小組合作方式的磨合,大部分學(xué)生已經(jīng)養(yǎng)成了良好的學(xué)習(xí)習(xí)慣,具有一定的理解能力和歸納能力。
    2、學(xué)生已經(jīng)學(xué)習(xí)了三角形的內(nèi)角和,這為本節(jié)課的學(xué)習(xí)打下了一定的基礎(chǔ)。八年級學(xué)生好奇心比較強(qiáng),觀察能力、動(dòng)手能力、自主探究能力都得到一定的訓(xùn)練,所以在探究任意四邊形內(nèi)角和時(shí)學(xué)生采用了測量、拼圖、折紙、分割的方法,但是把多邊形轉(zhuǎn)化為三角形這一過程是學(xué)生學(xué)習(xí)的難點(diǎn),所以在探究的過程中注重了把難點(diǎn)分散,有利于學(xué)生對本課知識(shí)的學(xué)習(xí)和掌握。
    根據(jù)《新課程標(biāo)準(zhǔn)》的要求,本節(jié)內(nèi)容的特點(diǎn)以及學(xué)生的情況,我確定以下教學(xué)目標(biāo)和重、難點(diǎn)。
    【知識(shí)與技能】。
    認(rèn)識(shí)多邊形,了解多邊形的定義,多邊形的頂點(diǎn)、邊、對角線、內(nèi)角及外角等概念;探索并掌握多邊形內(nèi)角和定理與外角和公式,在理解的基礎(chǔ)上運(yùn)用其解決簡單的實(shí)際問題。
    【數(shù)學(xué)思考】。
    學(xué)生通過猜想、動(dòng)手實(shí)踐、合作交流,歸納等活動(dòng)探索多邊形的內(nèi)角和公式與外角和公式,激發(fā)學(xué)生興趣、調(diào)動(dòng)學(xué)生積極性、鼓勵(lì)學(xué)生的的創(chuàng)造性思維,感受數(shù)學(xué)思考過程的條理性。
    【問題解決】。
    通過探索多邊形的內(nèi)角和獲得分析問題和解決問題的一些基本方法,并體驗(yàn)解決問題方法的多樣性,發(fā)展創(chuàng)新意識(shí),滲透轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。
    【情感態(tài)度】。
    在數(shù)學(xué)學(xué)習(xí)過程中,體驗(yàn)學(xué)習(xí)的快樂、獲得成功的喜悅,激發(fā)對圖形學(xué)習(xí)的好奇心,形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人交流合作的意識(shí)。
    【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    在這節(jié)課的教學(xué)中我結(jié)合了學(xué)生的實(shí)際情況和教學(xué)目標(biāo),借鑒了美國教育學(xué)家杜威的“做中學(xué)”的教育理論,運(yùn)用了如下的教學(xué)方法。
    1.教學(xué)方法:
    根據(jù)新課成標(biāo)準(zhǔn),教師教學(xué)應(yīng)該以學(xué)生的認(rèn)知發(fā)展水平和已有的經(jīng)驗(yàn)為基礎(chǔ)、面向全體學(xué)生,注重啟發(fā)式和因材施教。教師要發(fā)揮主導(dǎo)作用,處理好講授與學(xué)生自主學(xué)習(xí)的關(guān)系,引導(dǎo)學(xué)生獨(dú)立思考、主動(dòng)探索、合作交流,使學(xué)生理解和掌握基本的數(shù)學(xué)知識(shí)與技能,體會(huì)和運(yùn)用數(shù)學(xué)思想和方法,獲得基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,合作者,而學(xué)生才是學(xué)習(xí)的主體。
    2.學(xué)習(xí)方法:
    學(xué)生的學(xué)習(xí)應(yīng)當(dāng)是一個(gè)生動(dòng)活潑的、主動(dòng)的和富有個(gè)性的過程。所以利用學(xué)生的好奇心設(shè)疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,在學(xué)生在經(jīng)歷觀察、實(shí)驗(yàn)、猜測、推理、驗(yàn)證等活動(dòng)過程中,體會(huì)了數(shù)學(xué)學(xué)習(xí)方法,體驗(yàn)到了自主探索和合作交流快樂,更好更準(zhǔn)確的理解和掌握了本節(jié)課的內(nèi)容。
    環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課。
    問題情景:將一張正方形卡片剪一刀,剩下的卡片是什么圖形呢?
    做一做:讓學(xué)生拿出準(zhǔn)備好的紙片和剪刀動(dòng)手操作,并讓學(xué)生展示自己剪出的圖形。學(xué)生展示以下幾種圖形?(圖)同時(shí)老師指出這些圖形就是我們今天要研究的多邊形。(意圖是:通過動(dòng)手操作,激發(fā)了學(xué)生的興趣,學(xué)生體會(huì)到了圖形之間具有一定的聯(lián)系,順理成章引出本節(jié)課的學(xué)習(xí)內(nèi)容,符合學(xué)生的心里特征和認(rèn)知規(guī)律,調(diào)動(dòng)學(xué)生積極性,發(fā)展學(xué)生的創(chuàng)新意識(shí)。為整堂課的學(xué)習(xí)打下了基礎(chǔ))然后讓學(xué)生自學(xué)多邊形的定義,邊,[x10]頂點(diǎn),對角線,和內(nèi)角,外角的概念以及凸多形的知識(shí)。
    問題:三角形內(nèi)角和是多少?(設(shè)計(jì)這個(gè)問題的目的是:因?yàn)樘剿鞫噙呅蝺?nèi)角和的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。),那么我們剪出的圖形內(nèi)角和是多少呢?與三角形有什么聯(lián)系呢?(設(shè)計(jì)這個(gè)問題的目的是:使學(xué)生的興趣轉(zhuǎn)化為期待,進(jìn)入下一個(gè)環(huán)節(jié)。)。
    環(huán)節(jié)二、動(dòng)手操作、激發(fā)欲望。
    活動(dòng)1:做一做:讓學(xué)生用剪出的多邊形紙片探四邊形內(nèi)角和。
    (這一個(gè)環(huán)節(jié)我采取了小組合作的方式,給了學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,學(xué)生在探究過程中采用了測量、拼圖、折紙和做輔助線等多種方法,同時(shí)告訴學(xué)生測量、剪拼等活動(dòng)可能會(huì)產(chǎn)生誤差,由此讓學(xué)生感覺到做輔助線在解決幾何問題中的必要性。)。
    針對不同層次的學(xué)生,,適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割方法,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生自己到黑板上展示自己的解決辦法[x14]。
    想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、邊上、頂點(diǎn)處。同時(shí)指出求多邊形的內(nèi)角和的方法[x15]是一樣的,都是把多邊形轉(zhuǎn)化為三角形。
    (這些活動(dòng)的設(shè)計(jì)意圖是:讓學(xué)生通過猜想、動(dòng)手操作、合作交流等數(shù)學(xué)活動(dòng)獲得知識(shí),真正體會(huì)“做中學(xué)”的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣、調(diào)動(dòng)學(xué)生積極性、引發(fā)學(xué)生的數(shù)學(xué)思考,鼓勵(lì)學(xué)生的的創(chuàng)造性思維,培養(yǎng)學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,并讓學(xué)生在學(xué)習(xí)過程中,體驗(yàn)獲得成功的樂趣,激發(fā)對圖形學(xué)習(xí)的好奇心,形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人交流合作的意識(shí)。)。
    活動(dòng)2:讓學(xué)生利用方法1填表:
    圖形。
    能分成三角形的個(gè)數(shù)。
    (在教學(xué)過程中并沒有告訴學(xué)生結(jié)論,而是采用讓學(xué)生探索歸納、化未知為已知,自己去嘗試從而培養(yǎng)學(xué)生的創(chuàng)新能力。)。
    環(huán)節(jié)三:鞏固新知、知識(shí)共享。
    例題展示:
    例2:一個(gè)正多邊形的一個(gè)內(nèi)角為150°,你知道它是幾邊形嗎?
    例3:一個(gè)多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形?(設(shè)計(jì)這些例題的目的是鞏固和應(yīng)用內(nèi)角和與外角和公式)。
    小試牛刀(這里利用學(xué)生喜歡競賽的特征,我采用了分組展示,分組計(jì)分的形式,這樣能夠激發(fā)學(xué)生的學(xué)習(xí)興趣,并能培養(yǎng)學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神)。
    (3)一個(gè)多邊形的每個(gè)外角都等于60°,它是邊形。
    環(huán)節(jié)四:回歸情景、能力提升。
    將一個(gè)六邊形截去一個(gè)三角形后,內(nèi)角和是多少呢?這一環(huán)節(jié)我仍然采用的小組合作的形式,讓學(xué)生動(dòng)手畫圖,合作交流,分組展示。
    (學(xué)生通過課前的動(dòng)手活動(dòng)對問題情景中的問題已經(jīng)得到解決辦法,類比四邊形學(xué)生通過動(dòng)手操作,合作交流,互相驗(yàn)證得出六邊形的解決方法,設(shè)計(jì)這道題的意圖是:滲透類比思想在數(shù)學(xué)學(xué)習(xí)中的運(yùn)用,體會(huì)數(shù)學(xué)學(xué)習(xí)方法的重要性。)。
    環(huán)節(jié)五:暢所欲言、分享成果。
    請學(xué)生談?wù)勛约簩W(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化。
    最后用多媒體展示多邊形圖片結(jié)束本節(jié)課。(目的是讓學(xué)生感受現(xiàn)實(shí)中多邊形的豐富多彩和給我們的生活帶來的美感)。
    多邊形的內(nèi)角和的說課稿篇十一
    各位領(lǐng)導(dǎo),各位老師:
    大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。
    我的教學(xué)設(shè)計(jì)是華師大版七年級數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說一下本節(jié)課的教學(xué)設(shè)想:
    從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。
    學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級的學(xué)生具有好奇心,求知欲強(qiáng),互相評價(jià)互相提問的積極性高。因此對于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。
    新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)。
    【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。
    【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。
    【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。
    【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。
    本次課改很大程度上借鑒了美國教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。
    【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
    【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。
    【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
    整個(gè)教學(xué)過程分五步完成。
    1,創(chuàng)設(shè)情景,引入新課。
    首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。
    2,合作交流,探索新知。
    更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到n邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。
    3,歸納總結(jié),建構(gòu)體系。
    多邊形內(nèi)角和已得出,對外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。
    4,實(shí)際應(yīng)用,提高能力。
    "木工師傅可以用邊角余料鋪地板的原因是什么"這既是對本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊。
    5,分組競賽,升華情感。
    四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。
    板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理。
    本節(jié)課在知識(shí)上由簡單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。
    多邊形的內(nèi)角和的說課稿篇十二
    尊敬的各位領(lǐng)導(dǎo):
    老師大家好!
    由我為大家介紹我們工作坊團(tuán)隊(duì)成員共同設(shè)計(jì)的《多邊形的內(nèi)角和》一課。我將從教材思考、學(xué)生調(diào)研、教學(xué)目標(biāo)完善、教學(xué)過程設(shè)計(jì)等方面進(jìn)行匯報(bào)。
    《多邊形的內(nèi)角和》是冀教版小學(xué)數(shù)學(xué)四年級下冊第九單元探索樂園的第1課時(shí),本單元要求是“在問題探索中,促進(jìn)數(shù)學(xué)思維發(fā)展”。實(shí)現(xiàn)“不同的人在數(shù)學(xué)上得到不同的發(fā)展”是《數(shù)學(xué)課程標(biāo)準(zhǔn)》的基本理念,“發(fā)展合情推理和演繹推理能力”“清晰地表達(dá)自己的想法”“學(xué)會(huì)獨(dú)立思考、體會(huì)數(shù)學(xué)的基本思想和思維方式”是課程標(biāo)準(zhǔn)關(guān)于數(shù)學(xué)思考方面的具體要求。
    教材安排了兩個(gè)例題,一是探究多邊形邊數(shù)與分割的三角形個(gè)數(shù)的規(guī)律,二在分割三角形的基礎(chǔ)上探索多邊形內(nèi)角和。為了促進(jìn)學(xué)生思考的連續(xù)性與有序性,我們將教材中的兩個(gè)例題進(jìn)行有機(jī)結(jié)合,在充分研究四邊形五邊形內(nèi)角和方法的基礎(chǔ)上提出如何得出任意多邊形內(nèi)角和問題,為發(fā)展學(xué)生的數(shù)學(xué)思維提供素材、創(chuàng)造探索的空間,讓學(xué)生充分體會(huì)“畫線段—分割三角形—求內(nèi)角和”這樣一個(gè)連續(xù)推理歸納得出規(guī)律的活動(dòng)。
    學(xué)生在本冊第四單元認(rèn)識(shí)了三角形、知道三角形內(nèi)角和等于180度,會(huì)用字母表示數(shù)、字母表示數(shù)量關(guān)系的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。我們團(tuán)隊(duì)的成員對所在學(xué)校四年級同學(xué)進(jìn)行了調(diào)研,發(fā)現(xiàn)他們對于數(shù)學(xué)問題具有“猜想”的意識(shí),但是缺乏理性的思考。他們愿意自己動(dòng)手嘗試探索研究問題,但是對于探索之后有序思考、歸納總結(jié)認(rèn)識(shí)還不夠全面。
    有了以上分析,我們在尊重教材的基礎(chǔ)上,確定了本節(jié)課教學(xué)目標(biāo),并對“過程與方法”目標(biāo)進(jìn)行了完善補(bǔ)充。
    知識(shí)與技能:探索并了解多邊形的邊數(shù)與分割成的三角形個(gè)數(shù),以及內(nèi)角和之間隱含的規(guī)律;能運(yùn)用多邊形的內(nèi)角和知識(shí)解決相關(guān)問題。
    過程與方法:學(xué)生經(jīng)歷探索的全過程,積累探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律的經(jīng)驗(yàn),讓學(xué)生嘗試從不同的角度尋求解決問題的方法,體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法,發(fā)展理性思考。
    教學(xué)難點(diǎn):字母表達(dá)式的總結(jié)
    教學(xué)準(zhǔn)備:教師準(zhǔn)備三角形、四邊形、五邊形、六邊形圖片,裁紙刀,課件。
    學(xué)生學(xué)具準(zhǔn)備四邊形、五邊形等多邊形圖片模型,三角板。
    教學(xué)過程共分為四個(gè)環(huán)節(jié)。
    教學(xué)過程:
    一、創(chuàng)設(shè)情境,回顧三角形知識(shí)---注重知識(shí)的“生長點(diǎn)”
    同學(xué)們請看這是什么圖形?你了解它嗎?你能向大家介紹三角形哪些知識(shí)?(這樣設(shè)計(jì)意圖是注尊重學(xué)生已有知識(shí)經(jīng)驗(yàn),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,重點(diǎn)認(rèn)識(shí)三角形內(nèi)角的含義及三角形內(nèi)角和是180度的特點(diǎn))
    我們知道了三角形內(nèi)角和是180度,那么四邊形,五邊形的內(nèi)角和是多少度呢?這節(jié)課我們就一起來研究。
    二、自主合作,探究新知—注重“數(shù)學(xué)算法的優(yōu)化”共設(shè)計(jì)了三個(gè)探究活動(dòng)。
    1、四邊形內(nèi)角和
    (1)有同學(xué)愿意猜想四邊形內(nèi)角和嗎?猜想也要有根據(jù),你能說說你的根據(jù)嗎?(引導(dǎo)學(xué)生體會(huì)理性思考)
    有沒有同學(xué)一看到四邊形就馬上想到360度呢?你是根據(jù)哪個(gè)圖形直接想到的?(讓學(xué)生借助已有的長方形、正方形知識(shí)進(jìn)行理性推理,打通新舊知識(shí)之間聯(lián)系)
    我們通過計(jì)算長方形、正方形的內(nèi)角和是360度,是不是能說明所有四邊形內(nèi)角和都是360度?(引導(dǎo)學(xué)生體會(huì)這是一種“假設(shè)”因?yàn)樗翘厥鈭D形中做的成“猜想”)
    我們需要研究怎樣的圖形才能發(fā)現(xiàn)它們一般的特征和規(guī)律?(任意四邊形)
    (2)小組活動(dòng),利用學(xué)具中的任意四邊形想辦法計(jì)算內(nèi)角和。師巡視(注意學(xué)生不同的方法)
    (3)學(xué)生匯報(bào)??赡苡杏?jì)算法,引導(dǎo)學(xué)生起名字“量角求和法”
    撕角法,起名字“拼角求和法”。
    切割法1,起名字“一分為二求和法”(學(xué)生演示這種方法時(shí),教師幫忙切割,強(qiáng)調(diào)弄清楚四個(gè)內(nèi)角怎樣變成六個(gè)角,分成了幾個(gè)三角形,一是畫了一條線段,二是分成了二個(gè)三角形)
    歸納總結(jié):四邊形內(nèi)角和是360度。(通過不同的個(gè)性方法,驗(yàn)證四邊形內(nèi)角和,進(jìn)一步認(rèn)識(shí)內(nèi)角含義,感受不同算法的好處)
    2、五邊形內(nèi)角和
    今天的研究我們就停在這里嗎?根據(jù)經(jīng)驗(yàn),我們要向什么挑戰(zhàn)?(五邊形)你能猜想它是多少度嗎?請你選擇一種方法,證實(shí)你的猜想。
    總結(jié):看來數(shù)學(xué)的方法有很多,但是有的方法有局限性,有的方法只適合三角形和四邊形,量角有誤差,拼角法有的會(huì)超過360度,而第三種看起來最簡便。我們稱之為“優(yōu)化法”
    列出算式:180x3=540度(學(xué)生不僅在計(jì)算度數(shù)上有了經(jīng)驗(yàn),而且在計(jì)算方法上也有了經(jīng)驗(yàn))
    利用這種最優(yōu)的方法,同桌同學(xué)互相說一說,四邊形和五邊形各畫了幾條線段,分割成幾個(gè)三角形,怎樣求內(nèi)角和?(設(shè)計(jì)意圖是讓學(xué)生對探究過程進(jìn)行歸納整理,為進(jìn)一步有序的研究其他圖形指明研究方向。)
    現(xiàn)在我們就來看一看其他圖形是不是也有這樣的規(guī)律?
    3、六邊形、七邊形內(nèi)角和
    小組合作,自己完成探究過程,填寫表格。
    學(xué)生匯報(bào),總結(jié)畫出的線段數(shù)和三角形個(gè)數(shù)之間聯(lián)系。
    三、歸納總結(jié),形成規(guī)律---注重字母表達(dá)式的推理
    通過大家的研究,找到了規(guī)律,請問10邊形,能畫幾條線段,分成幾個(gè)三角形?
    90邊形?100邊形?n邊形呢?(老師說我們研究三角形的個(gè)數(shù),怎么去找邊數(shù)的呢?學(xué)生說分割出的三角形的個(gè)數(shù)跟邊數(shù)有關(guān)。那一千邊形形,n邊形呢?n-2得到的是什么?得到分成的三角形的個(gè)數(shù)。)
    師:今天你學(xué)到了什么?在今天的研究中哪些知識(shí)或研究的過程給你留下了深刻的印象?師:今天我們所研究的多邊形都是凸多邊形,還有一種多邊形,它們叫做凹多邊形,你能不能運(yùn)用今天的研究方法,探究凹多邊形的內(nèi)角和嗎?老師期待你在課后的研究成果。(設(shè)計(jì)意圖是不僅讓學(xué)生對本節(jié)課知識(shí)進(jìn)行總結(jié),也對數(shù)學(xué)的思想方法進(jìn)行回顧,鼓勵(lì)學(xué)生利用這些思想方法向類似數(shù)學(xué)問題挑戰(zhàn),以達(dá)到學(xué)以致用的目的。)
    以上是我們對這節(jié)課的粗淺設(shè)計(jì),懇請大家給予批評指正,謝謝!
    多邊形的內(nèi)角和的說課稿篇十三
    4、培養(yǎng)學(xué)生合作、表達(dá)等能力情感。
    教學(xué)重點(diǎn)與難點(diǎn):多邊形內(nèi)角和與外角和特點(diǎn)是重點(diǎn)。
    利用化歸思想歸納多邊形內(nèi)角和與外角和特點(diǎn)是難點(diǎn)。
    教學(xué)過程:
    一、創(chuàng)設(shè)情境。
    師出示一個(gè)三角形,問:這是什么圖形?它是怎樣定義的?
    生:三條線段首尾順次連接而成的圖形。
    師:以次類推,你能告訴我什么樣的圖形叫做四邊形?五邊形?……n邊形呢?
    這些圖形我們都叫做多邊形。
    師:屏幕上的這一類多邊形我們稱為凸多邊形,還有一類如:
    我們叫做凹多邊形,不在我們今天的研究范圍之內(nèi)。
    二、探究新知。
    1、?確立研究范圍。
    生1:它的角。
    師:那么今天我們不妨先來研究一下多邊形的角。(出示課題:多邊形的內(nèi)角和與外角和)。
    多邊形的內(nèi)角和的說課稿篇十四
    《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標(biāo)不是這一課本身,而是對于這一課的研究給我們數(shù)學(xué)教學(xué)的一點(diǎn)啟發(fā)。
    有幸與實(shí)驗(yàn)小學(xué)趙麗老師同時(shí)選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進(jìn)行了解讀。20世紀(jì)90年代,因?yàn)檗r(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識(shí)水平相近原則,把3,4名學(xué)生分為一個(gè)小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時(shí),b組自學(xué),反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對自己的.數(shù)學(xué)教學(xué)有了如下反思:
    1,以經(jīng)驗(yàn)為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。
    基于學(xué)生的認(rèn)知經(jīng)驗(yàn)及活動(dòng)經(jīng)驗(yàn),對學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實(shí)際教學(xué)中,對于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時(shí)間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對a組加以更細(xì)致的教學(xué)指導(dǎo),對b組更大膽的放手,讓學(xué)生上臺(tái)說,做,教,減少b組的教學(xué)時(shí)間。
    2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。
    在一開始設(shè)計(jì)b組的學(xué)習(xí)單時(shí),即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個(gè)三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學(xué)生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實(shí)際教學(xué)中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。
    3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。
    小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學(xué)生提出明確的要求,課前乃至平時(shí)都要對學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識(shí),而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會(huì),尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。
    多邊形的內(nèi)角和的說課稿篇十五
    難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實(shí)物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。
    方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學(xué)以致用。
    交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個(gè)頂點(diǎn)引的對角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。
    發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
    (四)概括存儲(chǔ)。
    學(xué)生自己歸納總結(jié):
    2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    八、教學(xué)反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
    2、學(xué)的轉(zhuǎn)變。
    學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
    多邊形的內(nèi)角和的說課稿篇十六
    過程與方法目標(biāo):通過多邊形內(nèi)角和公式的推導(dǎo)過程,提高邏輯思維能力。
    情感態(tài)度與價(jià)值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。
    教學(xué)重點(diǎn):多邊形的內(nèi)角和公式
    教學(xué)難點(diǎn):多邊形內(nèi)角和公式
    講解法、練習(xí)法、分小組討論法
    結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過程設(shè)置為以下五個(gè)教學(xué)環(huán)節(jié):導(dǎo)入新知、
    生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。
    1. 導(dǎo)入新知
    首先是導(dǎo)入新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的
    內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。
    通過提問的方式幫助學(xué)生回顧舊知識(shí)的同時(shí),引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。
    2. 生成新知
    接下來,進(jìn)入生成新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生將四邊形分成兩個(gè)三角形來求內(nèi)角和,由此
    得出四邊形的內(nèi)角和是2個(gè)三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個(gè)頂點(diǎn)出發(fā)劃分為3個(gè)4個(gè)三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個(gè)人為一個(gè)小組,五分鐘時(shí)間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個(gè)小組來回答他們討論的結(jié)果。由此生成我們的新知識(shí):多邊形的內(nèi)角和公式180*(n-2)。
    驗(yàn)證:七邊形驗(yàn)證
    在本環(huán)節(jié)中通過學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。
    3. 深化新知
    再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生思考一下有沒有其他的將多邊形分隔求
    內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個(gè)頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時(shí)候會(huì)發(fā)現(xiàn)有的分割可行有的分割不可行,在這個(gè)時(shí)候給他們講解為什么不可行為什么可行,以此來引出分割時(shí)對角線不能相交,從而強(qiáng)調(diào)我們分隔的一個(gè)原則。
    本環(huán)節(jié)的設(shè)計(jì)主要是對多變形內(nèi)角和的一個(gè)深入了解,給學(xué)生一個(gè)內(nèi)化的過程,同時(shí)引導(dǎo)學(xué)生不要將知識(shí)學(xué)死了,要活學(xué)活用,從多個(gè)角度來思考問題,解決問題。
    4. 鞏固提高
    我們說數(shù)學(xué)是來源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來的鞏固提高環(huán)節(jié),
    我講引領(lǐng)學(xué)生用我們所學(xué)過的多邊形的內(nèi)角和公式來解決生活中的實(shí)際問題。
    我會(huì)在ppt上播放一個(gè)蜂巢的圖片,然后提出一個(gè)問題,蜂房是幾邊形?每個(gè)蜂房的內(nèi)角和是多少?由此來引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識(shí)來解決問題,對多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。
    5. 小結(jié)作業(yè)
    先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識(shí)點(diǎn),然后找一位同學(xué)來總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識(shí)點(diǎn)。對本節(jié)課學(xué)習(xí)內(nèi)容有了一個(gè)回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來進(jìn)一步提升學(xué)生運(yùn)用知識(shí)的能力。
    多邊形的內(nèi)角和的說課稿篇十七
    1、通過測量、類比、推理等數(shù)學(xué)活動(dòng),探索多邊形的內(nèi)角和的公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
    2、通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的應(yīng)用,同時(shí)。
    時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過程中,體會(huì)數(shù)學(xué)的重要作用,感受數(shù)學(xué)活動(dòng)的重要意義和合作成功的喜悅,提高學(xué)生學(xué)習(xí)的熱情。
    重點(diǎn)。
    難點(diǎn)。
    知識(shí)聯(lián)系。
    多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識(shí)做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識(shí)上的準(zhǔn)備。
    知識(shí)背景。
    對多邊形在生活中有所認(rèn)識(shí)。
    學(xué)習(xí)興趣。
    通過探究過程更能激發(fā)學(xué)生學(xué)習(xí)的興趣。
    教學(xué)工具。
    三角板和幾何畫板。
    教學(xué)流程設(shè)計(jì)。
    活動(dòng)流程圖。
    活動(dòng)內(nèi)容和目的。
    活動(dòng)一,教師和學(xué)生任意畫幾個(gè)多邊形,用量角器測其內(nèi)角和。
    多邊形的內(nèi)角和的說課稿篇十八
    (1)知識(shí)結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個(gè)三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識(shí)。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn):
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評價(jià)。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序。
    練習(xí):課本124頁1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理。
    定理:四邊形的內(nèi)角和等于.
    注意:在研究四邊形時(shí),常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內(nèi)角和等于),
    練習(xí):
    1.課本124頁3題。
    小結(jié):
    知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
    作業(yè):課本130頁2、3、4題。
    多邊形的內(nèi)角和的說課稿篇十九
    (1)知識(shí)結(jié)構(gòu):
    (2)重點(diǎn)和難點(diǎn)分析:
    重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對后繼知識(shí)的學(xué)習(xí)起著重要的作用。
    難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個(gè)三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識(shí)。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學(xué)目標(biāo)?:
    2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點(diǎn):
    教學(xué)難點(diǎn)?:
    教學(xué)過程?:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價(jià).
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.
    注意:在研究四邊形時(shí),常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)?。
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè)?:課本130頁2、3、4題.
    多邊形的內(nèi)角和的說課稿篇二十
    教學(xué)目標(biāo)?。
    知識(shí)技能。
    通過探究,歸納出???。
    數(shù)學(xué)思考。
    1、?通過測量、類比、推理等數(shù)學(xué)活動(dòng),探索的公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
    2、?通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的應(yīng)用,同時(shí)。
    時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
    3、?通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過度到。
    論證幾何。
    解決問題。
    通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效的解決問題。
    情感態(tài)度。
    通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過程中,體會(huì)數(shù)學(xué)的重要作用,感受數(shù)學(xué)活動(dòng)的重要意義和合作成功的喜悅,提高學(xué)生學(xué)習(xí)的熱情。
    重點(diǎn)。
    難點(diǎn)。
    在探索時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    知識(shí)聯(lián)系。
    多邊形的對角線和三角形的內(nèi)角和為本節(jié)課的知識(shí)做了鋪墊,本節(jié)課的內(nèi)容為多邊形的外角和做知識(shí)上的準(zhǔn)備。
    知識(shí)背景。
    對多邊形在生活中有所認(rèn)識(shí)。
    學(xué)習(xí)興趣。
    通過探究過程更能激發(fā)學(xué)生學(xué)習(xí)的興趣。
    教學(xué)工具。
    三角板和幾何畫板。
    教學(xué)流程設(shè)計(jì)。
    活動(dòng)流程圖。
    活動(dòng)內(nèi)容和目的。
    活動(dòng)一,教師和學(xué)生任意畫幾個(gè)多邊形,用量角器測其內(nèi)角和。
    活動(dòng)四、探索任意公式。
    活動(dòng)六、小結(jié)和布置作業(yè)?。
    通過分組測量,得出這幾個(gè)。
    通過用不同方法分割四邊形為三角形,探索四邊形的內(nèi)角和。
    通過類比四邊形內(nèi)角和的得出方法,探索其他,發(fā)展學(xué)生的推理能力。
    通過畫正八邊形體會(huì)和應(yīng)用。
    梳理所學(xué)知識(shí),達(dá)到鞏固發(fā)展和提高的目的。
    教學(xué)過程?設(shè)計(jì)。
    問題與情景。
    師生行為。
    設(shè)計(jì)意圖。
    設(shè)計(jì)情景:什么是正多邊形?
    正八邊形有什么特點(diǎn)?
    你會(huì)畫邊長為3cm的正八邊形嗎?
    學(xué)生思考并回答問題。
    學(xué)生不會(huì)畫八邊形,畫八邊形需要知道它的每一個(gè)內(nèi)角,怎么就能知道八邊形的每一個(gè)內(nèi)角,就是今天要解決的問題,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。
    活動(dòng)1、
    在練習(xí)本畫出任意四邊形,五邊星,六邊形,七邊形。
    通過測量猜想每一個(gè),感受數(shù)學(xué)的可實(shí)驗(yàn)性,感受數(shù)學(xué)由特殊到一般的研究思想。
    活動(dòng)2(重點(diǎn))(難點(diǎn))。
    學(xué)生在練習(xí)本上把一個(gè)四邊形分割成幾個(gè)三角形,教師在黑板上畫幾個(gè)四邊形,叫幾個(gè)學(xué)生來分割,從而用推理求四邊形的內(nèi)角和,師生共同討論比較那一種分割方法比較合理有優(yōu)點(diǎn)。
    通過分割及推理,培養(yǎng)學(xué)生用推理論證來說明數(shù)學(xué)結(jié)論的能力,同時(shí)也培養(yǎng)學(xué)生比較和歸納的能力。
    通過分割及推理,進(jìn)一步培養(yǎng)學(xué)生的解決問題和推理的能力。
    活動(dòng)4、探索任意。
    把活動(dòng)2和3中的結(jié)論寫下來,進(jìn)行對比分析,進(jìn)一步猜想和推導(dǎo)任意,教師作總結(jié)性的結(jié)論,并且用動(dòng)畫演示多邊形隨著邊數(shù)的增加其內(nèi)角和的變化過程。
    活動(dòng)5、畫一個(gè)邊長為3cm的八邊形。
    讓學(xué)生在練習(xí)本上畫一個(gè)邊長為3cm的八邊形,教師進(jìn)行評價(jià)和展示。
    活動(dòng)6、小結(jié)和布置作業(yè)?。
    師生共同回顧本節(jié)所學(xué)過的內(nèi)容。
    多邊形的內(nèi)角和的說課稿篇二十一
    設(shè)計(jì)理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時(shí),對今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識(shí)的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再從本節(jié)的教學(xué)理念看,編者從簡單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問題轉(zhuǎn)化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價(jià)值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。
    二、學(xué)情分析:。
    三、教學(xué)目標(biāo)的確定:。
    3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過渡到論證幾何。
    四、重難點(diǎn)的確立:。
    既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點(diǎn)是探究多邊形的內(nèi)角和的公式。由于七年級學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點(diǎn)是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。
    多邊形的內(nèi)角和的說課稿篇二十二
    難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實(shí)物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。
    方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學(xué)以致用。
    交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個(gè)頂點(diǎn)引的對角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。
    發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實(shí)際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
    (四)概括存儲(chǔ)。
    學(xué)生自己歸納總結(jié):
    2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    八、教學(xué)反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
    2、學(xué)的轉(zhuǎn)變。
    學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。