有理數的除法人教版數學七年級教案(模板12篇)

字號:

    教案的編寫是教師進行教學準備的必要環(huán)節(jié),它能夠幫助教師清晰地了解教學目標和內容。教案的編寫需要注意教學評價的方式和評價指標,從而更好地了解學生的學習情況。以下是一份精心設計的教案,希望能夠為你提供一定的參考。
    有理數的除法人教版數學七年級教案篇一
    學習目標:。
    1、理解有理數的運算法則;能根據有理數乘法運算法則進行有理的簡單運算。
    2、經歷探索有理數乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.
    3、培養(yǎng)語言表達能力.調動學習積極性,培養(yǎng)學習數學的興趣.
    學習重點:有理數乘法。
    學習難點:法則推導。
    教學方法:引導、探究、歸納與練習相結合。
    教學過程。
    一、學前準備。
    計算:
    (1)(一2)十(一2)。
    (2)(一2)十(一2)十(一2)。
    (3)(一2)十(一2)十(一2)十(一2)。
    (4)(一2)十(一2)十(一2)十(一2)十(一2)。
    猜想下列各式的值:
    (一2)×2(一2)×3。
    (一2)×4(一2)×5。
    二、探究新知。
    1、自學有理數乘法中不同的形式,完成教科書中29~30頁的填空.
    2、觀察以上各式,結合對問題的研究,請同學們回答:
    (3)負數乘以正數積為__________數,(4)負數乘以負數積為__________數。
    提出問題:一個數和零相乘如何解釋呢?
    有理數的除法人教版數學七年級教案篇二
    1.1正數和負數(2)。
    教學目標:
    教學重點:
    深化對正負數概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復習引入:
    學生思考并討論.
    (數0既不是正數又不是負數,是正數和負數的分界,是基準.
    二、講解新課。
    度,用負數表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數表示收入款額,用負數表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結。
    引入負數可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數表示,那么另一種量可以用負數表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據實際情況決定.要特別注意零既不是正數也不是負數,建立正負數概念后,當考慮一個數時,一定要考慮它的符號,這與以前學過的數有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設計:
    有理數的除法人教版數學七年級教案篇三
    理解有理數的概念,懂得有理數的兩種分類方法:會判別一個有理數是整數還是分數,是正數、負數還是零。
    二、過程與方法。
    經歷對有理數進行分類的探索過程,初步感受分類討論的思想。
    三、情感態(tài)度與價值觀。
    通過對有理數的學習,體會到數學與現實世界的緊密聯系。
    教學重難點及突破。
    在引入了負數后,本課對所學過的數按照一定的標準進行分類,提出了有理數的概念。分類是數學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視。關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
    教學準備。
    用電腦制作動畫體現有理數的分類過程。
    教學過程。
    四、課堂引入。
    2.舉例說明現實中具有相反意義的量。
    3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
    4.舉兩個例子說明+5與-5的區(qū)別。
    有理數的除法人教版數學七年級教案篇四
    三、情感態(tài)度與價值觀。
    體會數學與現實生活的聯系,提高學生學習數學的興趣、
    教學重點、難點與關鍵。
    1、重點:有理數加減法統一為加法運算,掌握有理數加減混合運算、
    2、難點:省略括號和加號的加法算式的運算方法、
    投影儀、
    四、教學過程。
    一、復習提問,引入新課。
    1、敘述有理數的加法、減法法則、
    2、計算、
    (1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
    (4)(—8)—6;(5)5—14、
    五、新授。
    我們已學習了有理數加、減法的運算,今天我們來研究怎樣進行有理數的加減混合運算、
    六、鞏固練習。
    1、課本第24頁練習、
    (1)題是已寫成省略加號的代數和,可運用加法交換律、結合律、
    原式=1+3—4—0。5=0—0。5=—0。5。
    (2)題運用加減混合運算律,同號結合、
    原式=—2。4—4。6+3。5+3。5=—7+7=0。
    (3)題先把加減混合運算統一為加法運算、
    原式=(—7)+(—5)+(—4)+(+10)。
    =—7—5—4+10(省略括號和加號)。
    =—16+10。
    =—6。
    七、課堂小結。
    八、作業(yè)布置。
    1、課本第25頁第26頁習題1、3第5、6、13題、
    九、板書設計:
    第四課時。
    1、把有理數加減混合運算轉化為加法后,常用加法交換律和結合律使計算簡便、
    歸納:加減混合運算可以統一為加法運算、
    用式子表示為a+b—c=a+b+(—c)、
    2、隨堂練習。
    3、小結。
    4、課后作業(yè)。
    十、課后反思。
    本課教學反思。
    本節(jié)課主要采用過程教案法訓練學生的聽說讀寫。過程教案法的理論基礎是交際理論,認為寫作的過程實質上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學生指導,更正其錯誤,幫助學生完成寫作各階段任務。課堂是寫作車間,學生與教師,學生與學生彼此交流,提出反饋或修改意見,學生不斷進行寫作,修改和再寫作。在應用過程教案法對學生進行寫作訓練時,學生從沒有想法到有想法,從不會構思到會構思,從不會修改到會修改,這一過程有利于培養(yǎng)學生的寫作能力和自主學習能力。學生由于能得到教師的及時幫助和指導,所以,即使是英語基礎薄弱的同學,也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學生寫作興趣,增強了寫作的自信心。
    這個話題很容易引起學生的共鳴,比較貼近生活,能激發(fā)學生的興趣,在教授知識的同時,應注意將本單元情感目標融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當于一個簡單的定語從句,一個清晰的脈絡能為后續(xù)學習打下基礎。此教案設計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。
    在此教案過程中,應注重培養(yǎng)學生的自學能力,通過輔導學生掌握一套科學的學習方法,才能使學生的學習積極性進一步提高。再者,培養(yǎng)學生的學習興趣,增強教案效果,才能避免在以后的學習中產生兩極分化。
    在教案中任然存在的問題是,學生在“說”英語這個環(huán)節(jié)還有待提高,大部分學生都不愿意開口朗讀課文,所以復述課文便尚有難度,對于這一部分學生的學習成績的提高還有待研究。
    有理數的除法人教版數學七年級教案篇五
    學習過程:
    一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
    1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
    2.加法的交換律:
    兩個數相加,交換_______的位置,和不變.用式子表示:a+b=_______.
    3.加法的結合律:
    有理數的除法人教版數學七年級教案篇六
    學習目標:。
    1、理解加減法統一成加法運算的意義.
    2、會將有理數的加減混合運算轉化為有理數的加法運算.
    3、培養(yǎng)學習數學的興趣,增強學習數學的信心.
    教學方法:講練相結合。
    教學過程。
    1、一架飛機作特技表演,起飛后的高度變化如下表:
    高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
    記作+4.5千米—3.2千米+1.1千米—1.4千米。
    請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
    2、你是怎么算出來的,方法是。
    1、現在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
    2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
    如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
    =(-20)+(+3)+(+5)+(-7)先把減法轉化為加法。
    =-20+3+5-7再把加號記在腦子里,省略不寫。
    可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
    4、師生完整寫出解題過程。
    1、解決引例中的問題,再比較前面的方法,你的感覺是。
    2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
    3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
    1、小結:說說這節(jié)課的收獲。
    2、p241、2。
    3、計算。
    1)27—18+(—7)—322)。
    五、作業(yè)。
    1、p2552、p26第8題、14題。
    有理數的除法人教版數學七年級教案篇七
    (1)能用代數式表示實際問題中的數量關系.
    (2)理解單項式、單項式的次數,系數等概念,會指出單項式的次數和系數.
    講授法、談話法、討論法。
    【教學重點】。
    單項式的有關概念。
    【教學難點】。
    負系數的確定以及準確確定一個單項式的次數。
    【課前準備】。
    教師準備教學用課件。
    【教學過程】。
    一、新課引入。
    教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
    1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答下列問題:
    (1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
    分析:(1)根據速度、時間和路程之間的關系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).
    (2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).
    (3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.
    思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎上教師引導學生分析怎樣列式.
    上述的3個問題中的數量關系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.
    kb2.下面,我們再來看幾個用含字母的式子表示數量關系的問題.
    用含有字母的式子填空,看看列出的式子有什么特點.
    (1)邊長為a的正方體的表面積為______,體積為_______.
    (2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.
    (3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.
    (4)數n的相反數是_______.
    教師課堂巡視,關注中下程度的學生,及時引導,學生探究交流.
    上面各問題的代數式分別是:6a2,a3,2.5x,vt,-n.
    觀察上面各式中運算有什么共同特點?
    上面各式中,數字與字母之間,字母與字母之間都是乘法運算,它們都是數字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
    像上面這樣,只含有數與字母的積的式子叫做單項式.單獨的一個數或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.
    單項式中的數字因數叫做這個單項式的系數,例如:6a2的系數是6,a3的系數是1,-n的系數是-1,-的系數是-.
    單項式表示數字與字母相乘時,通常把數字寫成前面,當一個單項式的系數是1或-1時通常省略不寫.
    一個單項式中,所有字母的指數的和叫做這個單項式的次數.例如,2.5x中字母x的指數是1,2.5x是一次單項式;vt中字母v與t的指數和是2,vt是二次單項式,-ab2c中字母a、b、c的指數和是4,-ab2c是4次單項式.
    有理數的除法人教版數學七年級教案篇八
    1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
    2.掌握點到直線的距離的概念,并會度量點到直線的距離。
    3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
    [教學重點與難點]。
    1.教學重點:垂線的定義及性質。
    2.教學難點:垂線的畫法。
    [教學過程設計]。
    一、復習提問:
    1、敘述鄰補角及對頂角的定義。
    2、對頂角有怎樣的.性質。
    二.新課:
    引言:
    前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
    (一)垂線的定義。
    當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
    如圖,直線ab、cd互相垂直,記作,垂足為o。
    請同學舉出日常生活中,兩條直線互相垂直的實例。
    注意:
    1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
    2、掌握如下的推理過程:(如上圖)。
    反之,
    (二)垂線的畫法。
    探究:
    1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
    2、經過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
    3、經過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
    畫法:
    讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
    注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
    (三)垂線的性質。
    經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
    性質1過一點有且只有一條直線與已知直線垂直。
    練習:教材第7頁。
    探究:
    如圖,連接直線l外一點p與直線l上各點o,
    a,b,c,……,其中(我們稱po為點p到直線。
    l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
    性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
    簡單說成:垂線段最短。
    (四)點到直線的距離。
    直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
    如上圖,po的長度叫做點p到直線l的距離。
    有理數的除法人教版數學七年級教案篇九
    要想盡最大可能的發(fā)揮出課堂45分鐘的效益,需要從許多方面去準備,去思考,比如對教學重點和難點的突破,對課堂的組織對突發(fā)事件的應對以及對學生實際情況的了解等等。要想上好一節(jié)課需要付出很多的精力。復習課并不是單純的讓學生去重復練習,更重要的是使學生在鞏固基礎的前提下,分析問題解決問題的能力得到提高。
    有理數的除法人教版數學七年級教案篇十
    1、知識目標:借助生活中的實例理解有理數的意義,體會負數引入的必要性和有理數應用的廣泛性,會判斷一個數是正數還是負數。
    2、能力目標:能應用正負數表示生活中具有相反意義的量。
    3、情感態(tài)度:讓學生了解有關負數的歷史、體會負數與實際生活的聯系。教學重難點。
    重點:理解有理數的意義。
    難點:能用正負數表示生活中具有相反意義的量。
    教學過程。
    一、創(chuàng)設情境、提出問題。
    某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎分均為0分。兩個隊答題情況見書上第23頁。
    二、分析探索、問題解決。
    分組討論扣的分怎樣表示?
    用前面學的數能表示嗎?
    數怎么不夠用了?
    引出課題。
    講授正數、負數、有理數的定義。
    用負數表示比“0”低的數,如:-10,讀作負10,表示比0低10分的數。啟發(fā)學生再從生活中例舉出用負數表示具有相反意義的數。
    三、鞏固練習。
    1、用正數或負數表示下列各題中的數量:
    (2)球賽時,如果勝2局記作+2,那么-2表示______;。
    (3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;。
    (4)+150米表示高出海平面150米,低于海平面200米應記作______.
    分析:用正、負數可分別表示具有相反意義的量,通常高于海平面的高度用正數表示,低于海平面的高度用負數表示;完全相反的兩個方向,一個方向定為用正數表示,則另一個方向用負數表示;如運進與運出,收入與支出,盈利與虧損,買進與賣出,勝與負等都是具有相反意義的量。
    2、下面說法中正確的是().
    a.“向東5米”與“向西10米”不是相反意義的量;
    b.如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
    c.如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;。
    d.若將高1米設為標準0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米。
    三、小結回顧、納入體系。
    學生交流回顧、討論總結,教師補充如下:
    概念:正數、負數、有理數。
    分類:有理數的分類:兩種分法。
    應用:有理數可以用來表示具有相反意義的量。
    有理數的除法人教版數學七年級教案篇十一
    一、選擇題:(本題共24分,每小題3分)。
    在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.
    1.若一個數的倒數是7,則這個數是().
    a.-7b.7c.d.
    2.如果兩個等角互余,那么其中一個角的度數為().
    a.30°b.45°c.60°d.不確定。
    3.如果去年某廠生產的一種產品的產量為100a件,今年比去年增產了20%,那么今年的產量為()件.
    a.20ab.80ac.100ad.120a。
    4.下列各式中結果為負數的是().
    a.b.c.d.
    5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().
    a.ac=cbb.bc=2cdc.ad=2cdd.
    6.下列變形中,根據等式的性質變形正確的是().
    a.由,得x=2。
    b.由,得x=4。
    c.由,得x=3。
    d.由,得。
    7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().
    a.acb.abc.add.不確定。
    8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.
    a.48b.36c.24d.12。
    二、填空題:(本題共12分,每空3分)。
    9.人的大腦約有100000000000個神經元,用科學記數法表示為.
    10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.
    11.一個角的補角與這個角的余角的差等于度.
    12.瑞士的教師巴爾末從測量光譜的數據,,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數據,這個數據為.
    三、解答題:(本題共30分,每小題5分)。
    13.用計算器計算:(結果保留3個有效數字)。
    14.化簡:
    15.解方程。
    16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.
    拓展知識。
    有理數的除法人教版數學七年級教案篇十二
    多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統小結和課外學習幾個方面。
    及時了解、掌握常用的數學思想和方法。
    中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。