2015華中科技大學(xué)考研大綱資訊:2015考研大綱:華中科技大學(xué)《數(shù)學(xué)》(含高等數(shù)學(xué)、線(xiàn)性代數(shù))
2015華中科技大學(xué)碩士研究生入學(xué)考試《數(shù)學(xué)》(含高等數(shù)學(xué)、線(xiàn)性代數(shù)) 考試大綱
一、函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 簡(jiǎn)單應(yīng)用問(wèn)題的函數(shù)關(guān)系的建立。 數(shù)列極限與函數(shù)極限的定義以及它們的性質(zhì) 函數(shù)的左極限與右極限 無(wú)窮小和無(wú)窮大的概念及其關(guān)系 無(wú)窮小的性質(zhì)及無(wú)窮小的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:

函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類(lèi)型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理)
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示方法。
2.了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形。
5.會(huì)建立簡(jiǎn)單應(yīng)用問(wèn)題中的函數(shù)關(guān)系式。
6.理解極限的概念,理解函數(shù)的左極限與右極限的概念,以及極限存在與左、右極限之間的關(guān)系。
7.掌握極限的性質(zhì)及四則運(yùn)算法則。
8.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。
9.理解無(wú)窮小、無(wú)窮大的概念,掌握無(wú)窮小的比較方法,會(huì)用等價(jià)無(wú)窮小求極限。
10.理解函數(shù)的連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型。
11.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
二、一元函數(shù)微分學(xué)考試內(nèi)容
考試內(nèi)容
導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線(xiàn)的切線(xiàn)和法線(xiàn) 基本初等函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)和微分的四則運(yùn)算 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù)的概念 簡(jiǎn)單函數(shù)的n階導(dǎo)數(shù) 微分在近似計(jì)算中的應(yīng)用 羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理 柯西(Cauchy)中值定理 泰勒(Taylor)定理 洛必達(dá)(L’Hospital)法則 函數(shù)的極值及其求法 函數(shù)單調(diào)性 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線(xiàn) 函數(shù)圖形的描繪 函數(shù)最大值和最小值的求法及簡(jiǎn)單應(yīng)用 弧微分 曲率的概念 兩曲線(xiàn)的交角。 考試要求
1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線(xiàn)的切線(xiàn)方程和法線(xiàn)方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分,了解微分在近似計(jì)算中的應(yīng)用。 3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的n階導(dǎo)數(shù)。
4.會(huì)求分段函數(shù)的一階、二階導(dǎo)數(shù)。
5.會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù),會(huì)求反函數(shù)的一階、二階導(dǎo)數(shù)。
6.理解并會(huì)用羅爾定理、拉格朗日中值定理和泰勒定理。
7.了解并會(huì)用柯西中值定理。
8.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值方法,掌握函數(shù)最大值和最小值的求法及其簡(jiǎn)單應(yīng)用。
9.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性和拐點(diǎn),會(huì)求函數(shù)圖形的水平、鉛直和斜漸近線(xiàn),會(huì)描繪函數(shù)的圖形。
10.掌握用洛必達(dá)法則未定式極限的方法。
11.了解曲率和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑,會(huì)求兩曲線(xiàn)的交角。
三、一元函數(shù)積分學(xué)
考試內(nèi)容
原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 變上限定積分定義的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨公式 不定積分和定積分的換元積分法部積分法 有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分 反常積分的概念和計(jì)算 定積分的應(yīng)用
考試要求
1.理解原函數(shù)概念,理解不定積分和定積分的概念。
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。
3.會(huì)求有理函數(shù)、三角函數(shù)有理式及簡(jiǎn)單無(wú)理函數(shù)的積分。
4.會(huì)求變上限定積分定義的函數(shù)的導(dǎo)數(shù),掌握牛頓-萊布尼式茨公式。
5會(huì)計(jì)算廣義積分。
6了解定積分的近似計(jì)算法。
7掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量 (平面圖形的面積、平面曲線(xiàn)的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力及函數(shù)的平均值等)。
考研大綱匯總 | 考研英語(yǔ)大綱 | 考研政治大綱 | 考研數(shù)學(xué)大綱 | 考研專(zhuān)業(yè)課大綱 |