2017考研農(nóng)學(xué)門(mén)類(lèi)聯(lián)考數(shù)學(xué)大綱:線(xiàn)性代數(shù)

字號(hào):


    出國(guó)留學(xué)考研網(wǎng)為大家提供2017考研農(nóng)學(xué)門(mén)類(lèi)聯(lián)考數(shù)學(xué)大綱:線(xiàn)性代數(shù),更多考研資訊請(qǐng)關(guān)注我們網(wǎng)站的更新!
    2017考研農(nóng)學(xué)門(mén)類(lèi)聯(lián)考數(shù)學(xué)大綱:線(xiàn)性代數(shù)
    一、行列式
    考試內(nèi)容
    行列式的概念和基本性質(zhì)行列式按行(列)展開(kāi)定理
    考試要求
    1.了解行列式的概念,掌握行列式的性質(zhì).
    2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式.
    二、矩陣
    考試內(nèi)容
    矩陣的概念矩陣的線(xiàn)性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)
    考試要求
    1.理解矩陣的概念,了解單位矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱(chēng)矩陣、反對(duì)稱(chēng)矩陣及正交矩陣等的定義和性質(zhì).
    2.掌握矩陣的線(xiàn)性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
    3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.
    4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
    三、向量
    考試內(nèi)容
    向量的概念向量的線(xiàn)性組合與線(xiàn)性表示向量組的線(xiàn)性相關(guān)與線(xiàn)性無(wú)關(guān)向量組的極大線(xiàn)性無(wú)關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系
    考試要求
    1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.
    2.理解向量的線(xiàn)性組合與線(xiàn)性表示、向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)等概念,掌握向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.
    3.理解向量組的極大線(xiàn)性無(wú)關(guān)組和秩的概念,會(huì)求向量組的極大線(xiàn)性無(wú)關(guān)組及秩.
    4.了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.
    四、線(xiàn)性方程組
    考試內(nèi)容
    線(xiàn)性方程組的克拉默(Cramer)法則線(xiàn)性方程組有解和無(wú)解的判定齊次線(xiàn)性方程組的基礎(chǔ)解系和通解非齊次線(xiàn)性方程組的解與相應(yīng)的齊次線(xiàn)性方程組的解之間的關(guān)系非齊次線(xiàn)性方程組的通解
    考試要求
    1.會(huì)用克拉默法則解線(xiàn)性方程組.
    2.掌握非齊次線(xiàn)性方程組有解和無(wú)解的判定方法.
    3.理解齊次線(xiàn)性方程組的基礎(chǔ)解系的概念,掌握齊次線(xiàn)性方程組的基礎(chǔ)解系和通解的求法.
    4.了解非齊次線(xiàn)性方程組的結(jié)構(gòu)及通解的概念.
    5.掌握用初等行變換求解線(xiàn)性方程組的方法.
    五、矩陣的特征值和特征向量
    考試內(nèi)容
    矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣實(shí)對(duì)稱(chēng)矩陣的特征值、特征向量及其相似對(duì)角矩陣
    考試要求
    1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.
    2.了解矩陣相似的概念和相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣.
    3.了解實(shí)對(duì)稱(chēng)矩陣的特征值和特征向量的性質(zhì).
    小編精心為您推薦:
    2017考研大綱解析匯總
    2017考研招生簡(jiǎn)章
    2017考研專(zhuān)業(yè)目錄
      2017考研報(bào)名
      2017考研報(bào)名時(shí)間
      2017考研報(bào)名流程
    
考研大綱匯總 考研英語(yǔ)大綱 考研政治大綱 考研數(shù)學(xué)大綱 考研專(zhuān)業(yè)課大綱