乘法分配律教學反思

字號:


    下面是由出國留學網(wǎng)整理的乘法分配律教學反思,歡迎閱讀。更多關于教學反思的文章,盡在實用資料欄目。
    乘法分配律教學反思(一)
    乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。我根據(jù)教學內容的特點,為學生提供多種 探究方法,激發(fā)學生的自主意識。
    具體設計:先創(chuàng)設兔子吃蘿卜的情景,調動學生的學習積極性。
    通過買“老伯伯養(yǎng)了10只猴子,每只兔子早上吃4個蘿卜,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,讓學生通過觀察兩種不同的計算方法也得到了相同的結果,這兩個算式也可用“=”連接。
    然后讓學生觀察這兩個等式的特點,仿造上面的等式填空。
    (4+5)×25=(14+25)×5=(37+125)×8=。
    再讓學生觀察這幾組算式,等號左邊的算式有什么相同點?等號右邊的算式有什么相同點?等號左邊算式中的兩個加數(shù)與右邊算式中的什么數(shù)有關系?左邊算式中的一個因數(shù)與右邊算式中的哪個數(shù)有關系?使之讓學生從中感受了乘法分配律的模型。
    從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。”用字母形式表示:(a+b)×c=a×c+b×c,他們確實能夠體會到兩個不同的算式具有相等的關系。
    第一步:通過資料獲取繼續(xù)研究的信息。
    雖然所得的信息很簡單,只是幾組具有相等關系的算式,但這是學生通過活動自己獲取的,學生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調動學生的參與意識。
    第二步:觀察算式,尋找規(guī)律。讓學生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不急于告訴學生答案,而是讓學生自己通過舉例加以驗證。這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
    第三步:應用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學生鞏固和擴大知識,又是吸收內化知識的階段,同時還是開發(fā)學生創(chuàng)新思維的重要階段。
    本節(jié)課的可取之處:
    1.為學生提供了充分的數(shù)學活動機會,把學生的活動定位在感悟和體驗上,引導學生用數(shù)學思維方式去發(fā)現(xiàn)、去探索。
    2.使學生在辨析與爭論中,自然而然地完成猜測與驗證,形成清晰的認識,在學生舉例中使學生感到乘法分配律的一個重要因素,最后由特殊到一般總結字母公式。
    3.將模仿式的學習變?yōu)樘骄渴降膶W習。
    4.在本課的練習設計上,能力求有針對性,有坡度,同時也注意知識的延伸。
    本節(jié)課的不足之處:
    1、習題在安排上在充分理解《乘法分配律》的基礎上,可以再安排一些具有思考性的題目,如78×99+78=78×(99+1),為后面的簡便運算作伏筆,這樣教學效果會更好。
    2、在數(shù)學術語上還得反復推敲,以達到準確無誤。
    3、本堂課中新的教學理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學生的積極性沒有充分調動起來。
    我會堅持不斷學習理論知識,多聽課多向前輩們請教,切實提高業(yè)務能力。
    乘法分配律教學反思(二)
    乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。
    從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學目標定位準確,沒有把目標定位局限于探索理解乘法分配律,而是又引導學生應用乘法分配律進行了簡便計算,通過學生與學生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構。整節(jié)課的學習氛圍輕松愉悅、學生思維活躍、教學效果非常好?;就瓿山虒W任務。
    劉老師對本課的教學設計很科學,思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學生經(jīng)歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學生一種數(shù)學思想和數(shù)學方法,這也正是新課標強調的對學生其中兩基培養(yǎng)的體現(xiàn)。
    一、讓學生從生活實例去理解乘法分配律
    一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
    通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
    如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
    借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
    二、突破乘法分配律的教學難點
    讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
    相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變
    形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
    學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
    在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
    當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
    建議:在教學中不僅要注意乘法分配律的外形結構,更要注重其內涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關鍵詞“分別”加以分析,以此深化對數(shù)學模型的理解。否則,象38×99+38這樣的形式,就會成為學生練習中的攔路虎。
    乘法分配律教學反思(三)
    乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶?。因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:
    一、讓學生從生活實例去理解乘法分配律
    一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
    通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
    如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
    借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
    二、突破乘法分配律的教學難點
    讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
    相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變
    形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
    學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
    在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
    當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
    乘法分配律教學反思(四)
    一、抓住重點。讓學生理解乘法分配律的意義。
    教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
    在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析??梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
    我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
    總之,這個關鍵今天并沒有完成好。
    二、考慮學生的學習情況,尊重他們的主觀感受。
    在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
    三、練習中注意乘法分配律的變式。
    乘法分配律的意義是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74.一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習時也是一樣。
    今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
    想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。因此在第4題的算算比比中才得以補上了這一缺點。
    相信經(jīng)過這一深刻乘法分配律教學反思,老師們對于以后的教學會做的更好,也希望其他老師可以借鑒其中的要點,學生也能夠在其中掌握學習的著眼點。
    乘法分配律教學反思(五)
    乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
    一、抓住重點。讓學生理解乘法分配律的意義。
    教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
    在教學時,我是按照如上的步驟進行教學的??墒窃谖乙龑W生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
    我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
    總之,這個關鍵今天并沒有完成好。
    二、考慮學生的學習情況,尊重他們的主觀感受。
    在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
    三、練習中注意乘法分配律的變式。
    乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74.一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習時也是一樣。
    今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
    想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
    乘法分配律教學反思(六)
    計算教學是小學數(shù)學教學中的重要組成部分,幾乎每一冊的教材中都有計算的教學,而其中的“簡便計算”教學更是計算教學的一部“重頭戲”。學好簡便運算,不僅能降低計算的難度,而且能提高計算的正確率和速度,更重要的是,能使學生將學到的定理、定律、法則、性質等運算規(guī)律融會貫通,達到學以致用的目的,從而能培養(yǎng)學生良好的計算習慣。
    乘法分配律的教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。所以,對于乘法分配律的教學,我沒有把重點放在規(guī)律的數(shù)學語言表達上,而是注重引導學生積極主動的參與感悟、體驗、發(fā)現(xiàn)數(shù)學規(guī)律的過程,并且學會用辯證的思維方式思考問題,培養(yǎng)良好的思維習慣,真正落實學生的主體地位。
    在教學中,我主要做到了以下幾點:
    1、關注學生已有的知識經(jīng)驗。興趣是形成良好學習習慣的催化劑。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,也就是根據(jù)例題圖,提出問題:買5件夾克衫和5條褲子,一共要付多少元?通過兩種算式的比較,喚醒了學生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學,激發(fā)了學生的學習興趣。
    2、引導學生積極主動探究。配養(yǎng)學生主動探究的學習習慣,是數(shù)學老師在數(shù)學課上的重要任務。先讓學生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,讓學生觀察,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,買的數(shù)量都相同,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎?讓學生在再次解決問題的過程中進一步感受乘法分配律的存在。然后我引導學生觀察,初步發(fā)現(xiàn)規(guī)律,再引導學生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,繼續(xù)引導學生觀察,直到發(fā)現(xiàn)規(guī)律,同時質疑是否有反例,再一致確定規(guī)律的存在,并得出字母公式。
    對于乘法分配律的教學,我把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。讓學生在課堂上經(jīng)歷了數(shù)學研究的基本過程:即感知——猜想——驗證——總結——應用的過程,學生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關知識,而且掌握了科學探究的方法,數(shù)學思維的能力也得到了發(fā)展。
    3、注重合作與交流,多向互動。學生在學習數(shù)學知識的過程中能學會與人合作交流,這也是一種良好的學習習慣,而倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個liuxue86.com學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數(shù)學學習中都得到發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構。學生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維,增強思維的條理性,學生也學得積極主動。
    4、練習設計關注學生思維能力的發(fā)展。在練習題型的設計上,我基本尊重課本上知識的體系,在第4個練習中,三組題目的對比練習主要是鞏固學生對乘法分配律的理解,讓學生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進行計算,這有助于幫助學生提高計算的正確性,有利于學生養(yǎng)成良好的計算習慣。我在設計教學時,先出示一組題,在學生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學生初步感知女生做的題比較簡便,然后再出示第二組,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,至此我引導學生發(fā)現(xiàn):有時先加再乘比較簡便,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,作出合理的選擇,甚至可以根據(jù)乘法分配律先做適當改寫,使計算更簡便。
    這樣設計,使學生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,并且產(chǎn)生了濃厚的學習興趣,對下一課時運用乘法分配律進行簡便計算打下了良好的基礎。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元?”這是乘法分配律的變式,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆。由基本題到變式題,有機地聯(lián)系在一起。使學生逐步加深認識,在弄清算理的基礎上,學生能根據(jù)題目的特點,靈活地運用所學知識進行練習。從課堂反饋來看,學生熱情較高,能夠學以致用。學生通過自己的努力以及和同學的交流合作,思維能力得到了發(fā)展。
    教學過程是一個不斷探討的過程,不斷追尋的過程。作為一名數(shù)學老師,希望能在與學生有限的接觸時間內幫助學生更快更好地養(yǎng)成良好的數(shù)學學習習慣,使我們的學生終身受益。這是一個值得我永遠追求并為之努力的目標。
    乘法分配律教學反思(七)
    乘法分配律,是老師數(shù)學教學的一個重要的代數(shù)內容,而這也是同學們考試的一個重點和難點。在教學的過程中,老師們也需要不斷地去反思,才可以更好地提高自己的教學水平。今天,學大網(wǎng)就給各位數(shù)學的老師同行們分享:乘法分配律教學反思
    乘法分配律教學反思
    乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍R虼宋以谝婚_始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:
    一、讓學生從生活實例去理解乘法分配律
    一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
    通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
    如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
    借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
    二、突破乘法分配律的教學難點
    讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
    相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
    學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
    在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
    當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
    乘法分配律教學反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。
    小編精心