2022年有理數(shù)的加法教案北師大版模板

字號(hào):

    作為一位杰出的老師,編寫(xiě)教案是必不可少的,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。寫(xiě)教案的時(shí)候需要注意什么呢?有哪些格式需要注意呢?這里我給大家分享一些最新的教案范文,方便大家學(xué)習(xí)。
    有理數(shù)的加法教案北師大版篇一
    分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來(lái)看一下本節(jié)課在教材中的地位和作用。
    1、 有理數(shù)的加法在整個(gè)知識(shí)系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問(wèn)題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
    2、 就第二章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對(duì)值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
    從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
    接下來(lái),介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。(結(jié)合微機(jī)顯示)
    教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識(shí)目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識(shí)的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號(hào)兩數(shù)、絕對(duì)值不相等的異號(hào)兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對(duì)法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
    本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負(fù)數(shù)、數(shù)軸、相反數(shù)、絕對(duì)值等概念,因此我沒(méi)有把時(shí)間過(guò)多地放在復(fù)習(xí)這些舊知識(shí)上,而是利用學(xué)生的好奇心,采用生動(dòng)形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識(shí)。在法則的得出過(guò)程當(dāng)中,我引進(jìn)了現(xiàn)代化的教學(xué)工具微機(jī),讓學(xué)生在微機(jī)演示的一種動(dòng)態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過(guò)書(shū)上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過(guò)變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過(guò)程的設(shè)計(jì)簾具體體現(xiàn)。而且在做練習(xí)的過(guò)程當(dāng)中讓學(xué)生互相提問(wèn),使課堂在學(xué)生的參與下積極有序的進(jìn)行。
    在教學(xué)過(guò)程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),。教學(xué)過(guò)程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問(wèn)題結(jié)合起來(lái),為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過(guò)程中在掌握知識(shí)同時(shí)、發(fā)展智力、受到教育。
    1, 引入:再課堂的引入上,開(kāi)始我本打算選擇教材上的例子,但是它過(guò)于簡(jiǎn)單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問(wèn)題,讓學(xué)生在充當(dāng)指揮官的同時(shí),有一種解決問(wèn)題的成就感,從而使學(xué)生積極主動(dòng)的學(xué)習(xí),并且營(yíng)造了良好的學(xué)習(xí)氛圍。
    2, 探索規(guī)律:法則的得出重要體現(xiàn)知識(shí)的發(fā)生,發(fā)展,形成過(guò)程。我通過(guò)了一個(gè)小人在坐標(biāo)軸上來(lái)回的移動(dòng),使學(xué)生在小人的移動(dòng)過(guò)程當(dāng)中體會(huì)兩個(gè)數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問(wèn)題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過(guò)程。最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。
    3, 鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的過(guò)程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過(guò)程當(dāng)中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問(wèn)題。
    4, 歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a(bǔ)充。最后教師對(duì)本節(jié)的課進(jìn)行說(shuō)明。
    以上是我對(duì)本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評(píng)指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。
    要的。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問(wèn)題的能力。運(yùn)算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運(yùn)算的一種,它是有理數(shù)運(yùn)算的重要基礎(chǔ)之一,它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。
    2、 就第一章而言,有理數(shù)的加法是本章的一個(gè)重點(diǎn)。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運(yùn)算,有理數(shù)的意義是有理數(shù)運(yùn)算的基礎(chǔ),有理數(shù)的混合運(yùn)算是這一章的難點(diǎn),但混合運(yùn)算是以各種基本運(yùn)算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符合和絕對(duì)值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
    從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。
    接下來(lái),介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。
    教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。教學(xué)大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識(shí)目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進(jìn)行準(zhǔn)確運(yùn)算;(4)滲透數(shù)形結(jié)合的思想。2能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識(shí)的能力;3、德育目標(biāo)是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進(jìn)行的加法運(yùn)算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運(yùn)用是本節(jié)的重點(diǎn)內(nèi)容。因此本節(jié)課的重點(diǎn)是:有理數(shù)加法法則的理解與運(yùn)用。由于本階段的學(xué)生很難把握住事物主要特征:如異號(hào)兩數(shù)、絕對(duì)值不相等的異號(hào)兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對(duì)法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。
    以上是我對(duì)本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評(píng)指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。
    有理數(shù)的加法教案北師大版篇二
    經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行有理數(shù)加法運(yùn)算。
    有理數(shù)的加法法則
    異號(hào)兩數(shù)相加的法則
    一、復(fù)習(xí)提問(wèn):
    1、如果向東走5米記作+5米,那么向
    西走3米記作__。
    2、已知a=-5,b=+3,
    ︱a︳+︱b︱=_
    已知a=-5,b=+3,
    ︱a︱-︱b︱=__
    -1012345678
    二、授新課
    小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來(lái)位置的哪個(gè)方向?與原來(lái)相距多少米?規(guī)定向東的方向?yàn)檎较?BR>    提問(wèn):這題有幾種情況?
    小結(jié):有以下四種情況
    (1)兩次都向東走,
    (2)兩次都向西走
    (3)先向東走,再向西走
    (4)先向西走,再向東走
    根據(jù)小結(jié),我們?cè)俜治雒恳环N情況:
    (1)向東走5米,再向東走3米,一共向東走了多少米?
    +5+3(+5)+(+3)=+8
    (2)向西走-5米,再向西走-3米,一共向東走了多少米?
    -5-3(-3)+(-5)=-8
    (3)先向東走5米,再向西走3米,兩次一共向東走了多少米?
    +3+5(+5)+(-3)=2
    (4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
    -5+3(-5)+(+3)=-2
    下面再看兩種特殊情況:
    (5)向東走5米,再向西走5米,兩次一共向東走了多少米
    -5+5(+5)+(-5)=0
    (6)向西走5米,再向東走0米,兩次一共向東走了多少米?
    -5(-5)+0=-5
    小結(jié):總結(jié)前的六種情況:
    同號(hào)兩數(shù)相加:(+5)+(+3)=+8
    (-5)+(-3)=-8
    異號(hào)兩數(shù)相加:(+5)+(-3)=2
    (-5)+(+3)=-2
    (+5)+(-5)=0
    一數(shù)與零相加:(-5)+0=-5
    得出結(jié)論:有理數(shù)加法法則
    1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加
    2、絕對(duì)值不等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值?;橄喾磾?shù)的兩個(gè)數(shù)相加得零
    3、一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)
    例如:
    (-4)+(-5)(同號(hào)兩數(shù)相加)
    解:=-()(取相同的符號(hào))
    =-9(并把絕對(duì)值相加)
    (-2)+(+6)(絕對(duì)值不等的異號(hào)兩數(shù)相加)
    解:=+()(取絕對(duì)值較大的符號(hào))
    =+4(用較大的絕對(duì)值減去較小的絕對(duì)值)
    練習(xí):
    口答:
    1、(-15)+(-32)=
    2、(+10)+(-4)=
    3、7+(-4)=
    4、4+(-4)=
    5、9+(-2)=
    6、(-0.5)+4.4=
    7、(-9)+0=
    8、0+(-3)=
    計(jì)算:
    (1)(-3)+(-9)(2)(-1/2)+(+1/3)
    解略
    練習(xí):
    (1)15+(-22)=
    (2)(-13)+(-8)=
    (3)(-0·9)+1·5=
    (4)2·7+(-3·5)=
    (5)1/2+(-2/3)=
    (6)(-1/4)+(-1/3)=
    練習(xí)三:
    1、填空:
    (1)+11=27(2)7+=4
    (3)(-9)+=9(4)12+=0
    (5)(-8)+=-15(6)+(-13)=-6
    2、用“”號(hào)填空:
    (1)如果a>0,b>0,那么a+b0;
    (2)如果a<0,b<0,那么a+b0;
    (3)如果a>0,b|b|,那么a+b0;
    (4)如果a0,|a|>|b|,那么a+b0
    小結(jié):
    1、掌握有理數(shù)的加法法則,正確地進(jìn)
    行加法運(yùn)算。
    2、兩個(gè)有理數(shù)相加,首先判斷加法類(lèi)
    型,再確定和的符號(hào),最后確定和的絕對(duì)值。
    作業(yè):課本第38頁(yè)2、3
    第40頁(yè)1、2