參考答案第1章 平行線【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2與∠3相等,∠3與∠5互補(bǔ).理由略5.同位角是∠BFD 和∠DEC,同旁內(nèi)角是∠AFD 和∠AED6.各4對.同位角有∠B 與∠GAD,∠B 與∠DCF,∠D 與∠HAB,∠D 與∠ECB;內(nèi)錯(cuò)角有∠B 與∠BCE,∠B 與∠HAB,∠D 與∠GAD,∠D 與∠DCF;同旁內(nèi)角有∠B 與∠DAB,∠B 與∠DCB,∠D 與∠DAB,∠D與∠DCB【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,兩直線平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,兩直線平行5.a與b平行.理由略6.DG∥BF.理由如下:由DG,BF 分別是∠ADE 和∠ABC 的角平分線,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,則∠ADG=∠ABF,所以由同位角相等,兩直線平行,得DG∥BF【1.2(2)】1.(1)2,4,內(nèi)錯(cuò)角相等,兩直線平行 (2)1,3,內(nèi)錯(cuò)角相等,兩直線平行2.D3.(1)a∥c,同位角相等,兩直線平行 (2)b∥c,內(nèi)錯(cuò)角相等,兩直線平行(3)a∥b,因?yàn)椤希?,∠2的對頂角是同旁?nèi)角且互補(bǔ),所以兩直線平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE (同旁內(nèi)角互補(bǔ),兩直線平行)5.(1)180°;AD;BC(2)AB 與CD 不一定平行.若加上條件∠ACD=90°,或∠1+∠D=90°等都可說明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,兩直線平行),∴ ∠3=∠4(兩直線平行,同位角相等)4.垂直的意義;已知;兩直線平行,同位角相等;305.β=44°. ∵ AB∥CD, ∴ α=β6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)兩直線平行,同位角相等 (2)兩直線平行,內(nèi)錯(cuò)角相等2.(1)³ (2)³ 3.(1)DAB (2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(內(nèi)錯(cuò)角相等,兩直線平行).∴ ∠4=∠3=120°(兩直線平行,同位角相等)5.能.舉例略6.∠APC=∠PAB+∠PCD.理由:連結(jié)AC,則∠BAC+∠ACD=180°.∴ ∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章 特殊三角形2.AB 與CD 平行.量得線段BD 的長約為2cm,所以兩電線桿間的距離約為120m【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3個(gè);△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如圖,答案不,圖中點(diǎn)C1,C2,C3均可2于 M,BN ⊥l3于 N,則 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=15cm7.AP 平分∠BAC.理由如下:由 AP 是中線,得 BP=復(fù)習(xí)題PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5題)3.(1)∠B,兩直線平行,同位角相等【2.2】(2)∠5,內(nèi)錯(cuò)角相等,兩直線平行(3)∠BCD,CD,同旁內(nèi)角互補(bǔ),兩直線平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=