2017考研數(shù)學(xué)線性代數(shù)必考考點(diǎn)大全

字號:

相關(guān)推薦:
    >>>2017年全國碩士研究生報(bào)名指導(dǎo)專題
    >>>2017年考研報(bào)名時(shí)間、考研報(bào)名入口專題
    >>>全國各地2017年考研報(bào)考點(diǎn)匯總
    >>>2017年考研時(shí)間、研究生考試時(shí)間安排
    >>>2017年考研大綱下載及解析匯總
    >>>2017年全國碩士研究生招生簡章專題
    新東方網(wǎng)校推薦:2017年考研政治、英語、數(shù)學(xué)課程!!點(diǎn)擊進(jìn)入免費(fèi)試聽>>
    


    1.向量部分,理解相關(guān)無關(guān)概念,靈活進(jìn)行判定
    向量組的線性相關(guān)問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點(diǎn)。如何掌握這部分內(nèi)容呢?首先在于對定義概念的理解,然后就是分析判定的重點(diǎn),即:看是否存在一組全為零的或者有非零解的實(shí)數(shù)對?;A(chǔ)線性相關(guān)問題也會涉及類似的題型:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。
    2.線性方程組部分,判斷解的個(gè)數(shù),明確通解的求解思路
    線性方程組解的情況,主要涵蓋了齊次線性方程組有非零解、非齊次線性方程組解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明以及帶參數(shù)的線性方程組的解的情況。為了使考生牢固掌握線性方程組的求解問題,博研堂專家對含參數(shù)的方程通解的求解思路進(jìn)行了整理,希望對考研同學(xué)有所幫助。通解的求法有兩種,若為齊次線性方程組,首先求解方程組的矩陣對應(yīng)的行列式的值,在特征值為零和不為零的情況下分別進(jìn)行討論,為零說明有解,帶入增廣矩陣化簡整理;不為零則有解直接求出即可。若為非齊次方程組,則按照對增廣矩陣的討論進(jìn)行求解。
    3.矩陣的特征值與特征向量部分,理解概念方法,掌握矩陣對角化的求解
    矩陣的特征值、特征向量部分可劃分為三給我板塊:特征值和特征向量的概念及計(jì)算、方陣的相似對角化、實(shí)對稱矩陣的正交相似對角化。相關(guān)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對角化、有關(guān)實(shí)對稱矩陣的問題。
    4.二次型部分,熟悉正定矩陣的判別,了解規(guī)范性和慣性定理
    二次型矩陣是二次型問題的一個(gè)基礎(chǔ),且大部分都可以轉(zhuǎn)化為它的實(shí)對稱矩陣的問題來處理。另外二次型及其矩陣表示,二次型的秩和標(biāo)準(zhǔn)形等概念、二次型的規(guī)范形和慣性定理也是填空選擇題中的不可或缺的部分,二次型的標(biāo)準(zhǔn)化與矩陣對角化緊密相連,要會用配方法、正交變換化二次型為標(biāo)準(zhǔn)形;掌握二次型正定性的判別方法等等。