高中高三數(shù)學(xué)上冊《組合》課件

字號:

課件中對每個課題或每個課時的教學(xué)內(nèi)容,教學(xué)步驟的安排,教學(xué)方法的選擇,板書設(shè)計,教具或現(xiàn)代化教學(xué)手段的應(yīng)用,各個教學(xué)步驟教學(xué)環(huán)節(jié)的時間分配等等,下面是整理的高中高三數(shù)學(xué)上冊《組合》課件,歡迎閱讀與借鑒。
    一、教學(xué)內(nèi)容分析
    本節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了乘法原理、排列、排列數(shù)公式和加法原理以后的知識,學(xué)生已經(jīng)掌握了排列問題,并且對順序與排列的關(guān)系已經(jīng)有了一個比較清晰的認識.因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕?、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學(xué)生往往感到困惑,分不清到底與順序有無關(guān)系,指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會貫通.
    二、教學(xué)目標設(shè)計
    1.理解組合的意義,掌握組合數(shù)的計算公式;
    2.能正確認識組合與排列的聯(lián)系與區(qū)別
    3.通過練習(xí)與訓(xùn)練體驗并初步掌握組合數(shù)的計算公式
    三、教學(xué)重點及難點
    組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
    四、教學(xué)用具準備
    多媒體設(shè)備
    五、教學(xué)流程設(shè)計
    六、教學(xué)過程設(shè)計
    一、復(fù)習(xí)引入
    1.復(fù)習(xí)
    我們在前幾節(jié)中學(xué)習(xí)了排列、排列數(shù)以及排列數(shù)公式
    定義
    特點
    相同排列
    公式
    排列
    以上由學(xué)生口答.
    2.引入
    那么請問:平面上有7個點,問以這7點中任何兩個為端點,構(gòu)成有向線段有幾條?
    這是一個排列問題
    若改為:構(gòu)成的線段有幾條?則為,
    其實亦可用另一種方法解決,這就是組合.
    二、學(xué)習(xí)新課
    探究性質(zhì)
    1.組合定義:P16
    一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.
    【說明】:⑴不同元素;⑵“只取不排”——無序性;
    ⑶相同組合:元素相同.
    2.組合數(shù)定義:
    從個不同元素中取出個元素的所有組合的個數(shù),叫做從個不同元素中取出個元素的組合數(shù).用符號表示.
    如:引入中的例子可表示為
    ==這是為什么呢?
    因為構(gòu)成有向線段的問題可分成2步來完成:
    第一步,先從7個點中選2個點出來,共有種選法;
    第二步,將選出的2個點做一個排列,有種次序;
    根據(jù)乘法原理,共有•=所以
    •判斷何為排列、組合問題:利用書本P16~P17例題請學(xué)生判斷
    •這個公式叫組合數(shù)公式
    3.組合數(shù)公式:
    如==
    用計算器求、、、
    可發(fā)現(xiàn)==
    由此猜想:
    用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當(dāng)于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一一對應(yīng)”的.
    證明:∵
    又,∴
    當(dāng)m=n時,
    此性質(zhì)作用:當(dāng)時,計算可變?yōu)橛嬎?,能夠使運算簡化.
    4.組合數(shù)性質(zhì):
    1、
    2、=
    可解釋為:從這n1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m(1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據(jù)加法原理,可以得到組合數(shù)的另一個性質(zhì).在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
    證明:
    得證.
    【說明】1(公式特征:下標相同而上標差1的兩個組合數(shù)之和,等于下標比原下標多1而上標與高的相同的一個組合數(shù).
    2(此性質(zhì)的作用:恒等變形,簡化運算.在今后學(xué)習(xí)“二項式定理”時,我們會看到它的主要應(yīng)用.
    2.例題分析
    例1、(1),求x
    (2)
    (3)
    略解:(1)
    (2)
    (3)
    例2、應(yīng)用題:
    有15本不同的書,其中6本是數(shù)學(xué)書,問:
    分給甲4本,且都不是數(shù)學(xué)書;
    略解:(1)
    3.問題拓展
    例3.題設(shè)同例2:
    (2)平均分給3人;
    (3)若平均分為3份;
    (4)甲分2本,乙分7本,丙分6本;
    (5)1人2本,1人7本,1人6本.
    略解:(2)(3)
    (4)(5)