初三年級(jí)上冊(cè)數(shù)學(xué)教案

字號(hào):


    書籍好比一架梯子,它能引導(dǎo)我們登上知識(shí)的殿堂。書籍如同一把鑰匙,它能幫助我們開啟心靈的智慧之窗。以下是為您整理的《初三年級(jí)上冊(cè)數(shù)學(xué)教案》,供大家學(xué)習(xí)參考。
    一元二次方程
    【1.1建立一元二次方程模型】
    教學(xué)目標(biāo)
    1、在把實(shí)際問題轉(zhuǎn)化為一元二次方程的模型的過程中,形成對(duì)一元二次方程的感性認(rèn)識(shí)。
    2、理解一元二次方程的定義,能識(shí)別一元二次方程。
    3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
    重點(diǎn)難點(diǎn)
    重點(diǎn):能建立一元二次方程模型,把一元二次方程整理成一般形式。
    難點(diǎn):把實(shí)際問題轉(zhuǎn)化為一元二次方程的模型。
    教學(xué)過程
    (一)創(chuàng)設(shè)情境
    前面我們?cè)褜?shí)際問題轉(zhuǎn)化成一元方程和二元方程組的模型,大家已經(jīng)感受到了方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具。本節(jié)課我們將繼續(xù)進(jìn)行建立方程模型的探究。
    1、展示課本P.2問題一
    引導(dǎo)學(xué)生設(shè)人行道寬度為xm,表示草坪邊長(zhǎng)為35-2xm,找等量關(guān)系,列出方程。
    (35-2x)2=900①
    2、展示課本P.2問題二
    引導(dǎo)思考:小明與小亮第相遇以后要再次相遇,他們走的路程有何關(guān)系?怎樣用他們?cè)俅蜗嘤龅臅r(shí)間表示他們各自行駛的路程?
    通過思考上述問題,引導(dǎo)學(xué)生設(shè)經(jīng)過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關(guān)系列出方程
    2t+×0.01t2=3t②
    3、能把①,②化成右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式的形式嗎?讓學(xué)生展開討論,并引導(dǎo)學(xué)生把①,②化成下列形式:
    4x2-140x+32③
    0.01t2-2t=0④
    (二)探究新知
    1、觀察上述方程③和④,啟發(fā)學(xué)生歸納得出:
    如果一個(gè)方程通過移項(xiàng)可以使右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是:
    ax2+bx+c=0,(a,b,c是已知數(shù)且a≠0),
    其中a,b,c分別叫作二次項(xiàng)系數(shù)、項(xiàng)系數(shù)、常數(shù)項(xiàng)。
    2、讓學(xué)生指出方程③,④中的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
    (三)講解例題
    例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)。
    [解]去括號(hào),得3x2+5x-12=x2+4x+4,
    化簡(jiǎn),得2x2+x-16=0。
    二次項(xiàng)系數(shù)是2,項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。
    點(diǎn)評(píng):一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個(gè)特征:一是方程的右邊為0,二是左邊二次項(xiàng)系數(shù)不能為0。此外要使學(xué)生認(rèn)識(shí)到:二次項(xiàng)系數(shù)、項(xiàng)系數(shù)和常數(shù)項(xiàng)都是包括符號(hào)的。
    例2:下列方程,哪些是一元方程?哪些是一元二次方程?
    (1)2x+3=5x-2;(2)x2=25;
    (3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
    [解]方程(1),(3)是一元方程;方程(2),(4)是一元二次方程。
    點(diǎn)評(píng):通過一元方程與一元二次方程的比較,使學(xué)生深刻理解一元二次方程的意義。
    (四)應(yīng)用新知
    課本P.4,練習(xí)第3題,
    (五)課堂小結(jié)
    1、一元二次方程的顯著特征是:只有一個(gè)未知數(shù),并且未知數(shù)的高次數(shù)是2。
    2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)、常數(shù)項(xiàng)都是根據(jù)一般形式確定的。
    3、在把實(shí)際問題轉(zhuǎn)化為一元二次方程模型的過程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。
    (六)思考與拓展
    當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元二次方程?這時(shí)方程的二次項(xiàng)系數(shù)、項(xiàng)系數(shù)分別是什么?當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元方程?
    當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元方程。
    布置作業(yè)
    課本習(xí)題1.1中A組第1,2,3題。
    教學(xué)后記:
    【1.2.1因式分解法、直接開平方法(1)】
    教學(xué)目標(biāo)
    1、進(jìn)一步體會(huì)因式分解法適用于解一邊為0,另一邊可分解成兩個(gè)因式乘積的一元二次方程。
    2、會(huì)用因式分解法解某些一元二次方程。
    3、進(jìn)一步讓學(xué)生體會(huì)“降次”化歸的思想。
    重點(diǎn)難點(diǎn)
    重點(diǎn):,掌握用因式分解法解某些一元二次方程。
    難點(diǎn):用因式分解法將一元二次方程轉(zhuǎn)化為一元方程。
    教學(xué)過程
    (一)復(fù)習(xí)引入1、提問:
    (1)解一元二次方程的基本思路是什么?
    (2)現(xiàn)在我們已有了哪幾種將一元二次方程“降次”為一元方程的方法?
    2、用兩種方法解方程:9(1-3x)2=25
    (二)創(chuàng)設(shè)情境
    說明:可用因式分解法或直接開平方法解此方程。解得x1=,,x2=-。
    1、說一說:因式分解法適用于解什么形式的一元二次方程。
    歸納結(jié)論:因式分解法適用于解一邊為0,另一邊可分解成兩個(gè)因式乘積的一元二次方程。
    2、想一想:展示課本1.1節(jié)問題二中的方程0.01t2-2t=0,這個(gè)方程能用因式分解法解嗎?
    (三)探究新知
    引導(dǎo)學(xué)生探索用因式分解法解方程0.01t2-2t=0,解答課本1.1節(jié)問題二。
    把方程左邊因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0
    解得tl=0,t2=200。
    t1=0表明小明與小亮第相遇;t2=200表明經(jīng)過200s小明與小亮再次相遇。
    (四)講解例題
    1、展示課本P.8例3。
    按課本方式引導(dǎo)學(xué)生用因式分解法解一元二次方程。
    2、讓學(xué)生討論P(yáng).9“說一說”欄目中的問題。
    要使學(xué)生明確:解方程時(shí)不能把方程兩邊都同除以一個(gè)含未知數(shù)的式子,若方程兩邊同除以含未知數(shù)的式子,可能使方程漏根。
    3、展示課本P.9例4。
    讓學(xué)生自己嘗試著解,然后看書上的解答,交換批改,并說一說在解題時(shí)應(yīng)注意什么。
    (五)應(yīng)用新知
    課本P.10,練習(xí)。
    (六)課堂小結(jié)
    1、用因式分解法解一元二次方程的基本步驟是:先把一個(gè)一元二次方程變形,使它的一邊為0,另一邊分解成兩個(gè)因式的乘積,然后使每一個(gè)因式等于0,分別解這兩個(gè)一元方程,得到的兩個(gè)解就是原一元二次方程的解。
    2、在解方程時(shí),千萬注意兩邊不能同時(shí)除以一個(gè)含有未知數(shù)的代數(shù)式,否則可能丟失方程的一個(gè)根。
    (七)思考與拓展
    用因式分解法解下列一元二次方程。議一議:對(duì)于含括號(hào)的守霜露次方程,應(yīng)怎樣適當(dāng)變形,再用因式分解法解。
    (1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。
    [解](1)原方程可變形為2(3x-2)+(3x-2)(x+1)=0,
    (3x-2)(x+3)=0,3x-2=0,或x+3=0,
    所以xl=,x2=-3
    (2)去括號(hào)、整理得x2+2x-3=12,x2+2x-15=0,
    (x+5)(x-3)=0,x+5=0或x-3=0,
    所以x1=-5,x2=3
    先讓學(xué)生動(dòng)手解方程,然后交流自己的解題經(jīng)驗(yàn),教師引導(dǎo)學(xué)生歸納:對(duì)于含括號(hào)的一元二次方程,若能把括號(hào)看成一個(gè)整體變形,把方程化成一邊為0,另一邊為兩個(gè)式的積,就不用去括號(hào),如上述(1);否則先去括號(hào),把方程整理成一般形式,再看是否能將左邊分解成兩個(gè)式的積,如上述(2)。
    布置作業(yè)
    教學(xué)后記:
    【1.2.1因式分解法、直接開平方法(2)】
    教學(xué)目標(biāo)
    1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元方程。
    2、學(xué)會(huì)用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
    3、引導(dǎo)學(xué)生體會(huì)“降次”化歸的思路。
    重點(diǎn)難點(diǎn)
    重點(diǎn):掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
    難點(diǎn):通過分解因式或直接開平方將一元二次方程降次為一元方程。
    教學(xué)過程
    (一)復(fù)習(xí)引入
    1、判斷下列說法是否正確
    (1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();
    (2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();
    (3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),
    若(x+3)(x-6)=0,則x+3=0或x-6=0();
    (4)若x+3=或x-6=2,則(x+3)(x-6)=1(),
    若(x+3)(x-6)=1,則x+3=或x-6=2()。
    答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
    2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;
    若x2=2,則x=。
    答案:平方根,±,±2,±。
    (二)創(chuàng)設(shè)情境
    前面我們已經(jīng)學(xué)了一元方程和二元方程組的解法,解二元方程組的基本思路是什么?(消元、化二元方程組為一元方程)。由解二元方程組的基本思路,你能想出解一元二次方程的基本思路嗎?
    引導(dǎo)學(xué)生思考得出結(jié)論:解一元二次方程的基本思路是“降次”化一元二次方程為一元方程。
    給出1.1節(jié)問題一中的方程:(35-2x)2-900=0。
    問:怎樣將這個(gè)方程“降次”為一元方程?
    (三)探究新知
    讓學(xué)生對(duì)上述問題展開討論,教師再利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個(gè)一元方程來解。讓學(xué)生知道什么叫因式分解法和直接開平方法。
    (四)講解例題
    展示課本P.7例1,例2。
    按課本方式引導(dǎo)學(xué)生用因式分解法和直接開平方法解一元二次方程。
    引導(dǎo)同學(xué)們小結(jié):對(duì)于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。
    因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個(gè)因式的乘積(本節(jié)課主要是用平方差公式分解因式)的形式,然后使每一個(gè)因式等于0,分別解兩個(gè)一元方程,得到的兩個(gè)解就是原一元二次方程的解。
    直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個(gè)一元方程,得到的解就是原一元二次方程的解。
    注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個(gè)因式乘積的一元二次方程;
    (2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負(fù)數(shù)沒有平方根,所以規(guī)定k≥0,當(dāng)k<0時(shí),方程無實(shí)數(shù)解。
    (五)應(yīng)用新知
    課本P.8,練習(xí)。
    (六)課堂小結(jié)
    1、解一元二次方程的基本思路是什么?
    2、通過“降次”,把—元二次方程化為兩個(gè)一元方程的方法有哪些?基本步驟是什么?
    3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?
    (七)思考與拓展
    不解方程,你能說出下列方程根的情況嗎?
    (1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
    答案:(1)有兩個(gè)不相等的實(shí)數(shù)根;(2)和(4)沒有實(shí)數(shù)根;(3)有兩個(gè)相等的實(shí)數(shù)根
    通過解答這個(gè)問題,使學(xué)生明確一元二次方程的解有三種情況。
    布置作業(yè)
    【1.2.1因式分解法、直接開平方法(3)】
    考標(biāo)要求:
    1體會(huì)因式分解法適用于解一邊為0,另一邊可分解為兩個(gè)因式的乘積的一元二次方程;
    2會(huì)用因式分解法解某些一元二次方程。
    重點(diǎn):用因式分解法解一元二次方程。
    難點(diǎn):用因式分解把一元二次方程化為左邊是兩個(gè)二項(xiàng)式相乘右邊是零的形式。
    一填空題(每小題5分,共25分)
    1解方程(2+x)(x-3)=0,就相當(dāng)于解方程()
    A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
    2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學(xué)解方程的過程:
    (1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;
    (2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
    其中正確的是()
    A小明B小亮C都正確D都不正確
    3下面方程不適合用因式分解法求解的是()
    A2-32=0,B2(2x-3)-=0,,D
    4方程2x(x-3)=5(x-3)的根是()
    Ax=,Bx=3C=,=3Dx=
    5定義一種運(yùn)算“※”,其規(guī)則為:a※b=(a+1)(b+1),根據(jù)這個(gè)規(guī)則,方程x※(x+1)=0的解是()
    Ax=0Bx=-1C=0,=-1,D=-1=-2
    二填空題(每小題5分,共25分)
    6方程(1+)-(1-)x=0解是=_____,=__________
    7當(dāng)x=__________時(shí),分式值為零。
    8若代數(shù)式與代數(shù)式4(x-3)的值相等,則x=_________________
    9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長(zhǎng),則這個(gè)等腰三角形的周長(zhǎng)=_______.
    10如果,則關(guān)于x的一元二次方程a+bx=0的解是_________
    三解答題(每小題10分,共50分)
    11解方程
    (1)+2x+1=0(2)4-12x+9=0
    (3)25=9(4)7x(2x-3)=4(3-2x)
    12解方程=(a-2)(3a-4)
    13已知k是關(guān)于x的方程4k-8x-k=0的一個(gè)根,求k的值。?
    14解方程:-2+1=0
    15對(duì)于向上拋的物體,在沒有空氣阻力的情況下,有如下關(guān)系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見,本題中g(shù)取10米/),t是拋出后所經(jīng)過的時(shí)間。
    如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面
    【1.2.2配方法(1)】
    教學(xué)目標(biāo)
    1、理解“配方”是一種常用的數(shù)學(xué)方法,在用配方法將一元二次方程變形的過程中,讓學(xué)生進(jìn)一步體會(huì)化歸的思想方法。
    2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
    重點(diǎn)難點(diǎn)
    重點(diǎn):會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
    難點(diǎn):用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。
    教學(xué)過程
    (一)復(fù)習(xí)引入
    1、a2±2ab+b2=?
    2、用兩種方法解方程(x+3)2-5=0。
    如何解方程x2+6x+4=0呢?
    (二)創(chuàng)設(shè)情境
    如何解方程x2+6x+4=0呢?
    (三)探究新知
    1、利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學(xué)的因式分解法或直接開平方法解。
    2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學(xué)生完成課本P.10的“做一做”并引導(dǎo)學(xué)生歸納:當(dāng)二次項(xiàng)系數(shù)為“1”時(shí),只要在二次項(xiàng)和項(xiàng)之后加上項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。
    (四)講解例題
    例1(課本P.11,例5)
    [解](1)x2+2x-3(觀察二次項(xiàng)系數(shù)是否為“l(fā)”)
    =x2+2x+12-12-3(在項(xiàng)和二次項(xiàng)之后加上項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使它與原式相等)
    =(x+1)2-4。(使含未知數(shù)的項(xiàng)在一個(gè)完全平方式里)
    用同樣的方法講解(2),讓學(xué)生熟悉上述過程,進(jìn)一步明確“配方”的意義。
    例2引導(dǎo)學(xué)生完成P.11~P.12例6的填空。
    (五)應(yīng)用新知
    1、課本P.12,練習(xí)。
    2、學(xué)生相互交流解題經(jīng)驗(yàn)。
    (六)課堂小結(jié)
    1、怎樣將二次項(xiàng)系數(shù)為“1”的一元二次方程配方?
    2、用配方法解一元二次方程的基本步驟是什么?
    (七)思考與拓展
    解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
    說一說一元二次方程解的情況。
    [解](1)將方程的左邊配方,得(x-3)2+1=0,移項(xiàng),得(x-3)2=-1,所以原方程無解。
    (2)用配方法可解得x1=x2=-。
    (3)用配方法可解得x1=,x2=
    一元二次方程解的情況有三種:無實(shí)數(shù)解,如方程(1);有兩個(gè)相等的實(shí)數(shù)解,如方程(2);有兩個(gè)不相等的實(shí)數(shù)解,如方程(3)。
    課后作業(yè)
    課本習(xí)題
    教學(xué)后記:
    【1.2.2配方法(2)】
    教學(xué)目標(biāo)
    1、理解用配方法解一元二次方程的基本步驟。
    2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
    3、進(jìn)一步體會(huì)化歸的思想方法。
    重點(diǎn)難點(diǎn)
    重點(diǎn):會(huì)用配方法解一元二次方程.
    難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。
    教學(xué)過程
    (一)復(fù)習(xí)引入
    1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.
    2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?
    (二)創(chuàng)設(shè)情境
    現(xiàn)在我們已經(jīng)會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?
    怎樣解這類方程:2x2-4x-6=0
    (三)探究新知
    讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來解。讓學(xué)生進(jìn)一步體會(huì)化歸的思想。
    (四)講解例題
    1、展示課本P.14例8,按課本方式講解。
    2、引導(dǎo)學(xué)生完成課本P.14例9的填空。
    3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;后將配方后的一元二次方程用因式分解法或直接開平方法來解。
    (五)應(yīng)用新知
    課本P.15,練習(xí)。
    (六)課堂小結(jié)
    1、用配方法解一元二次方程的基本步驟是什么?
    2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。
    3、配方法是解一元二次方程的通法,但是由于配方的過程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。
    4、按圖1—l的框圖小結(jié)前面所學(xué)解
    一元二次方程的算法。
    (七)思考與拓展
    不解方程,只通過配方判定下列方程解的
    情況。
    (1)4x2+4x+1=0;(2)x2-2x-5=0;
    (3)–x2+2x-5=0;
    [解]把各方程分別配方得
    (1)(x+)2=0;
    (2)(x-1)2=6;
    (3)(x-1)2=-4
    由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒有實(shí)數(shù)根。
    點(diǎn)評(píng):通過解答這三個(gè)問題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對(duì)一元二次方程解的三種情況的認(rèn)識(shí)。