高三必修三數(shù)學(xué)知識(shí)點(diǎn)

字號(hào):

與高一高二不同之處在于,此時(shí)復(fù)習(xí)力學(xué)部分知識(shí)是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時(shí)需要進(jìn)行查漏補(bǔ)缺,但也需要同時(shí)提升能力,填補(bǔ)知識(shí)、技能的空白。高三頻道為你精心準(zhǔn)備了《高三必修三數(shù)學(xué)知識(shí)點(diǎn)》助你金榜題名!
    1.高三必修三數(shù)學(xué)知識(shí)點(diǎn)
    1、直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    2、直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點(diǎn)的直線的斜率公式:
    注意下面四點(diǎn):
    (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無(wú)關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
    2.高三必修三數(shù)學(xué)知識(shí)點(diǎn)
    不等式的解集:
    ①能使不等式成立的未知數(shù)的值,叫做不等式的解。
    ②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
    ③求不等式解集的過程叫做解不等式。
    不等式的判定:
    ①常見的不等號(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
    ②在不等式“a>b”或“a
    ③不等號(hào)的開口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;
    ④在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
    3.高三必修三數(shù)學(xué)知識(shí)點(diǎn)
    1、圓柱體:
    表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:
    表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、正方體
    a-邊長(zhǎng),S=6a2,V=a3
    4、長(zhǎng)方體
    a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱
    S-底面積h-高V=Sh
    6、棱錐
    S-底面積h-高V=Sh/3
    7、棱臺(tái)
    S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、擬柱體
    S1-上底面積,S2-下底面積,S0-中截面積
    h-高,V=h(S1+S2+4S0)/6
    9、圓柱
    r-底半徑,h-高,C—底面周長(zhǎng)
    S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
    S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱
    R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、直圓錐
    r-底半徑h-高V=πr^2h/3
    12、圓臺(tái)
    r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
    13、球
    r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺
    h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺(tái)
    r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體
    R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑
    V=2π2Rr2=π2Dd2/4
    17、桶狀體
    D-桶腹直徑d-桶底直徑h-桶高
    V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
    V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    4.高三必修三數(shù)學(xué)知識(shí)點(diǎn)
    1.定義:
    用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
    ②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
    ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    5.高三必修三數(shù)學(xué)知識(shí)點(diǎn)
    1.不等式的定義
    在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
    2.比較兩個(gè)實(shí)數(shù)的大小
    兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,
    有a-b>0⇔;a-b=0⇔;a-b<0⇔.
    另外,若b>0,則有>1⇔;=1⇔;<1⇔.
    概括為:作差法,作商法,中間量法等.
    3.不等式的性質(zhì)
    (1)對(duì)稱性:a>b⇔;
    (2)傳遞性:a>b,b>c⇔;
    (3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;
    (4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;
    (5)可乘方:a>b>0⇒(n∈N,n≥2);
    (6)可開方:a>b>0⇒(n∈N,n≥2).