高一新生要作好充分思想準(zhǔn)備,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。記?。菏悄阒鲃拥剡m應(yīng)環(huán)境,而不是環(huán)境適應(yīng)你。因?yàn)槟阕呦蛏鐣⒓庸ぷ饕驳眠m應(yīng)社會。以下內(nèi)容是為你整理的《高一必修二物理知識點(diǎn)》,希望你不負(fù)時光,努力向前,加油!
1.高一必修二物理知識點(diǎn)
1.做功兩要素:力和物體在力的方向上發(fā)生位移
2.功:功是標(biāo)量,只有大小,沒有方向,但有正功和負(fù)功之分,單位為焦耳(J)
3.物體做正功負(fù)功問題(將α理解為F與V所成的角,更為簡單)
(1)當(dāng)α=90度時,W=0.這表示力F的方向跟位移的方向垂直時,力F不做功,
如小球在水平桌面上滾動,桌面對球的支持力不做功。
(2)當(dāng)α<90度時,cosα>0,W>0.這表示力F對物體做正功。
如人用力推車前進(jìn)時,人的推力F對車做正功。
(3)當(dāng)α大于90度小于等于180度時,cosα<0,W<0.這表示力F對物體做負(fù)功。
如人用力阻礙車前進(jìn)時,人的推力F對車做負(fù)功。
一個力對物體做負(fù)功,經(jīng)常說成物體克服這個力做功(取絕對值)。
例如,豎直向上拋出的球,在向上運(yùn)動的過程中,重力對球做了-6J的功,可以說成球克服重力做了6J的功。說了“克服”,就不能再說做了負(fù)功
4.動能是標(biāo)量,只有大小,沒有方向。表達(dá)式
5.重力勢能是標(biāo)量,表達(dá)式
(1)重力勢能具有相對性,是相對于選取的參考面而言的。因此在計算重力勢能時,應(yīng)該明確選取零勢面。
(2)重力勢能可正可負(fù),在零勢面上方重力勢能為正值,在零勢面下方重力勢能為負(fù)值。
6.動能定理:
W為外力對物體所做的總功,m為物體質(zhì)量,v為末速度,為初速度
2.高一必修二物理知識點(diǎn)
勻變速直線運(yùn)動的規(guī)律及其應(yīng)用:
1、定義:在任意相等的時間內(nèi)速度的變化都相等的直線運(yùn)動
2、勻變速直線運(yùn)動的基本規(guī)律
(1)任意兩個連續(xù)相等的時間T內(nèi)的位移之差為恒量
(2)某段時間內(nèi)時間中點(diǎn)瞬時速度等于這段時間內(nèi)的平均速度
3、初速度為零的勻加速直線運(yùn)動的比例式(2)初速度為零的勻變速直線運(yùn)動中的幾個重要結(jié)論
①1T末,2T末,3T末……瞬時速度之比為:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②1T內(nèi),2T內(nèi),3T內(nèi)……位移之比為:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)
③第一個T內(nèi),第二個T內(nèi),第三個T內(nèi)……第n個T內(nèi)的位移之比為:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通過連續(xù)相等的位移所用時間之比為:
易錯現(xiàn)象:
1、在一系列的公式中,不注意的v、a正、負(fù)。
2、紙帶的處理,是這部分的重點(diǎn)和難點(diǎn),也是易錯問題。
3、濫用初速度為零的勻加速直線運(yùn)動的特殊公式。
3.高一必修二物理知識點(diǎn)
認(rèn)識形變
1.物體形狀回體積發(fā)生變化簡稱形變。
2.分類:按形式分:壓縮形變、拉伸形變、彎曲形變、扭曲形變。
按效果分:彈性形變、塑性形變
3.彈力有無的判斷:
1)定義法(產(chǎn)生條件)
2)搬移法:假設(shè)其中某一個彈力不存在,然后分析其狀態(tài)是否有變化。
3)假設(shè)法:假設(shè)其中某一個彈力存在,然后分析其狀態(tài)是否有變化。
彈性與彈性限度
1.物體具有恢復(fù)原狀的性質(zhì)稱為彈性。
2.撤去外力后,物體能完全恢復(fù)原狀的形變,稱為彈性形變。
3.如果外力過大,撤去外力后,物體的形狀不能完全恢復(fù),這種現(xiàn)象為超過了物體的彈性限度,發(fā)生了塑性形變。
探究彈力
1.產(chǎn)生形變的物體由于要恢復(fù)原狀,會對與它接觸的物體產(chǎn)生力的作用,這種力稱為彈力。
2.彈力方向垂直于兩物體的接觸面,與引起形變的外力方向相反,與恢復(fù)方向相同。
繩子彈力沿繩的收縮方向;鉸鏈彈力沿桿方向;硬桿彈力可不沿桿方向。
彈力的作用線總是通過兩物體的接觸點(diǎn)并沿其接觸點(diǎn)公共切面的垂直方向。
3.在彈性限度內(nèi),彈簧彈力F的大小與彈簧的伸長或縮短量x成正比,即胡克定律。
F=kx
4.上式的k稱為彈簧的勁度系數(shù)(倔強(qiáng)系數(shù)),反映了彈簧發(fā)生形變的難易程度。
5.彈簧的串、并聯(lián):串聯(lián):1/k=1/k1+1/k2并聯(lián):k=k1+k2
4.高一必修二物理知識點(diǎn)
勻變速直線運(yùn)動規(guī)律
1.基本公式:s=v0t+at2/2
2.平均速度:vt=v0+at
3.推論:1)v=vt/2
S2—S1=S3—S2=S4—S3=……=△S=aT2
初速度為0的n個連續(xù)相等的時間內(nèi)S之比:
S1:S2:S3:……:Sn=1:3:5:……:(2n—1)
初速度為0的n個連續(xù)相等的位移內(nèi)t之比:
t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)
a=(Sm—Sn)/(m—n)T2(利用上各段位移,減少誤差→逐差法)
vt2—v02=2as
5.高一必修二物理知識點(diǎn)
一、曲線運(yùn)動
1.定義
運(yùn)動軌跡是曲線的運(yùn)動,由于曲線運(yùn)動中運(yùn)動方向時刻改變,故曲線運(yùn)動一定是變速運(yùn)動,例如勻速圓周運(yùn)動就是一種曲線運(yùn)動。
2.條件
合外力的方向與速度方向不在同一直線上,合外力與速度方向間夾角為銳角時,速率增大,為鈍角時,速率減小;始終為直角時,速率不變。
3.分類
曲線運(yùn)動分為勻變速曲線運(yùn)動,合外力是恒力;變加速曲線運(yùn)動。合外力是變力。
二、萬有引力
萬有引力定律:自然界中任何兩個物體都相互吸引,引力的方向在它們的連線上,引力的大小與物體的質(zhì)量1m和2m的乘積成正比、與它們之間距離r的二次方成反比。
1.開普勒第一定律:由叫軌道定律,所有行星繞太陽運(yùn)動的軌跡都是橢圓,太陽處于所有橢圓的一個公共焦點(diǎn)上。
2.開普勒第二定律:太陽與任何一個行星的連線在相等的時間內(nèi)掃過的面積相等。
3.開普勒第三定律:行星繞太陽運(yùn)行軌道半長軸r的立方與其公轉(zhuǎn)周期T的二次方成正比。
三、功和能
1.功
如果一個物體受到力的作用,并且在力的方向上發(fā)生了一段位移,我們就稱這個力對物體做了功。
2.動能
物體由于運(yùn)動而具有的.能量。
3.動能定理
合外力對物體做的功等于物體動能的變化量。
4.能量守恒定律
能量既不會創(chuàng)生,也不會消失,它只會從一種形式轉(zhuǎn)化為另一種形式,或從一個物體轉(zhuǎn)移到另一個物體,而在轉(zhuǎn)化或者轉(zhuǎn)移的過程中,能量的總量保持不變。在能量守恒的分支中,機(jī)械能守恒定律也是一塊重要的內(nèi)容。
1.高一必修二物理知識點(diǎn)
1.做功兩要素:力和物體在力的方向上發(fā)生位移
2.功:功是標(biāo)量,只有大小,沒有方向,但有正功和負(fù)功之分,單位為焦耳(J)
3.物體做正功負(fù)功問題(將α理解為F與V所成的角,更為簡單)
(1)當(dāng)α=90度時,W=0.這表示力F的方向跟位移的方向垂直時,力F不做功,
如小球在水平桌面上滾動,桌面對球的支持力不做功。
(2)當(dāng)α<90度時,cosα>0,W>0.這表示力F對物體做正功。
如人用力推車前進(jìn)時,人的推力F對車做正功。
(3)當(dāng)α大于90度小于等于180度時,cosα<0,W<0.這表示力F對物體做負(fù)功。
如人用力阻礙車前進(jìn)時,人的推力F對車做負(fù)功。
一個力對物體做負(fù)功,經(jīng)常說成物體克服這個力做功(取絕對值)。
例如,豎直向上拋出的球,在向上運(yùn)動的過程中,重力對球做了-6J的功,可以說成球克服重力做了6J的功。說了“克服”,就不能再說做了負(fù)功
4.動能是標(biāo)量,只有大小,沒有方向。表達(dá)式
5.重力勢能是標(biāo)量,表達(dá)式
(1)重力勢能具有相對性,是相對于選取的參考面而言的。因此在計算重力勢能時,應(yīng)該明確選取零勢面。
(2)重力勢能可正可負(fù),在零勢面上方重力勢能為正值,在零勢面下方重力勢能為負(fù)值。
6.動能定理:
W為外力對物體所做的總功,m為物體質(zhì)量,v為末速度,為初速度
2.高一必修二物理知識點(diǎn)
勻變速直線運(yùn)動的規(guī)律及其應(yīng)用:
1、定義:在任意相等的時間內(nèi)速度的變化都相等的直線運(yùn)動
2、勻變速直線運(yùn)動的基本規(guī)律
(1)任意兩個連續(xù)相等的時間T內(nèi)的位移之差為恒量
(2)某段時間內(nèi)時間中點(diǎn)瞬時速度等于這段時間內(nèi)的平均速度
3、初速度為零的勻加速直線運(yùn)動的比例式(2)初速度為零的勻變速直線運(yùn)動中的幾個重要結(jié)論
①1T末,2T末,3T末……瞬時速度之比為:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②1T內(nèi),2T內(nèi),3T內(nèi)……位移之比為:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)
③第一個T內(nèi),第二個T內(nèi),第三個T內(nèi)……第n個T內(nèi)的位移之比為:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通過連續(xù)相等的位移所用時間之比為:
易錯現(xiàn)象:
1、在一系列的公式中,不注意的v、a正、負(fù)。
2、紙帶的處理,是這部分的重點(diǎn)和難點(diǎn),也是易錯問題。
3、濫用初速度為零的勻加速直線運(yùn)動的特殊公式。
3.高一必修二物理知識點(diǎn)
認(rèn)識形變
1.物體形狀回體積發(fā)生變化簡稱形變。
2.分類:按形式分:壓縮形變、拉伸形變、彎曲形變、扭曲形變。
按效果分:彈性形變、塑性形變
3.彈力有無的判斷:
1)定義法(產(chǎn)生條件)
2)搬移法:假設(shè)其中某一個彈力不存在,然后分析其狀態(tài)是否有變化。
3)假設(shè)法:假設(shè)其中某一個彈力存在,然后分析其狀態(tài)是否有變化。
彈性與彈性限度
1.物體具有恢復(fù)原狀的性質(zhì)稱為彈性。
2.撤去外力后,物體能完全恢復(fù)原狀的形變,稱為彈性形變。
3.如果外力過大,撤去外力后,物體的形狀不能完全恢復(fù),這種現(xiàn)象為超過了物體的彈性限度,發(fā)生了塑性形變。
探究彈力
1.產(chǎn)生形變的物體由于要恢復(fù)原狀,會對與它接觸的物體產(chǎn)生力的作用,這種力稱為彈力。
2.彈力方向垂直于兩物體的接觸面,與引起形變的外力方向相反,與恢復(fù)方向相同。
繩子彈力沿繩的收縮方向;鉸鏈彈力沿桿方向;硬桿彈力可不沿桿方向。
彈力的作用線總是通過兩物體的接觸點(diǎn)并沿其接觸點(diǎn)公共切面的垂直方向。
3.在彈性限度內(nèi),彈簧彈力F的大小與彈簧的伸長或縮短量x成正比,即胡克定律。
F=kx
4.上式的k稱為彈簧的勁度系數(shù)(倔強(qiáng)系數(shù)),反映了彈簧發(fā)生形變的難易程度。
5.彈簧的串、并聯(lián):串聯(lián):1/k=1/k1+1/k2并聯(lián):k=k1+k2
4.高一必修二物理知識點(diǎn)
勻變速直線運(yùn)動規(guī)律
1.基本公式:s=v0t+at2/2
2.平均速度:vt=v0+at
3.推論:1)v=vt/2
S2—S1=S3—S2=S4—S3=……=△S=aT2
初速度為0的n個連續(xù)相等的時間內(nèi)S之比:
S1:S2:S3:……:Sn=1:3:5:……:(2n—1)
初速度為0的n個連續(xù)相等的位移內(nèi)t之比:
t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)
a=(Sm—Sn)/(m—n)T2(利用上各段位移,減少誤差→逐差法)
vt2—v02=2as
5.高一必修二物理知識點(diǎn)
一、曲線運(yùn)動
1.定義
運(yùn)動軌跡是曲線的運(yùn)動,由于曲線運(yùn)動中運(yùn)動方向時刻改變,故曲線運(yùn)動一定是變速運(yùn)動,例如勻速圓周運(yùn)動就是一種曲線運(yùn)動。
2.條件
合外力的方向與速度方向不在同一直線上,合外力與速度方向間夾角為銳角時,速率增大,為鈍角時,速率減小;始終為直角時,速率不變。
3.分類
曲線運(yùn)動分為勻變速曲線運(yùn)動,合外力是恒力;變加速曲線運(yùn)動。合外力是變力。
二、萬有引力
萬有引力定律:自然界中任何兩個物體都相互吸引,引力的方向在它們的連線上,引力的大小與物體的質(zhì)量1m和2m的乘積成正比、與它們之間距離r的二次方成反比。
1.開普勒第一定律:由叫軌道定律,所有行星繞太陽運(yùn)動的軌跡都是橢圓,太陽處于所有橢圓的一個公共焦點(diǎn)上。
2.開普勒第二定律:太陽與任何一個行星的連線在相等的時間內(nèi)掃過的面積相等。
3.開普勒第三定律:行星繞太陽運(yùn)行軌道半長軸r的立方與其公轉(zhuǎn)周期T的二次方成正比。
三、功和能
1.功
如果一個物體受到力的作用,并且在力的方向上發(fā)生了一段位移,我們就稱這個力對物體做了功。
2.動能
物體由于運(yùn)動而具有的.能量。
3.動能定理
合外力對物體做的功等于物體動能的變化量。
4.能量守恒定律
能量既不會創(chuàng)生,也不會消失,它只會從一種形式轉(zhuǎn)化為另一種形式,或從一個物體轉(zhuǎn)移到另一個物體,而在轉(zhuǎn)化或者轉(zhuǎn)移的過程中,能量的總量保持不變。在能量守恒的分支中,機(jī)械能守恒定律也是一塊重要的內(nèi)容。