高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納

字號(hào):

因?yàn)楦叨_始努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的計(jì)劃,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。高二頻道為你整理了《高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納》,助你金榜題名!
    1.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    1.一些基本概念:
    (1)向量:既有大小,又有方向的量.
    (2)數(shù)量:只有大小,沒有方向的量.
    (3)有向線段的三要素:起點(diǎn)、方向、長度.
    (4)零向量:長度為0的向量.
    (5)單位向量:長度等于1個(gè)單位的向量.
    (6)平行向量(共線向量):方向相同或相反的非零向量.
    ※零向量與任一向量平行.
    (7)相等向量:長度相等且方向相同的向量.
    2.向量加法運(yùn)算:
    ⑴三角形法則的特點(diǎn):首尾相連.
    ⑵平行四邊形法則的特點(diǎn):共起點(diǎn)
    2.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    有界性
    設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上XX。
    單調(diào)性
    設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D。如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
    奇偶性
    設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
    幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。
    奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
    設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
    幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變。
    偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
    偶函數(shù)不可能是個(gè)雙射映射。
    連續(xù)性
    在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
    3.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    輾轉(zhuǎn)相除法
    1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
    2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來兩個(gè)數(shù)的公約數(shù).
    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法,其基本過程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).
    4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.
    7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.
    8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).
    4.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。
    (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點(diǎn)。
    (8)顯然指數(shù)函數(shù)無XX。
    5.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    簡單隨機(jī)抽樣
    (1)總體和樣本
    ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.
    ②把每個(gè)研究對(duì)象叫做個(gè)體.
    ③把總體中個(gè)體的總數(shù)叫做總體容量.
    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,xx研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.
    (2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨
    機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
    (3)簡單隨機(jī)抽樣常用的方法:
    ①抽簽法
    ②隨機(jī)數(shù)表法
    ③計(jì)算機(jī)模擬法
    ③使用統(tǒng)計(jì)軟件直接抽取。
    在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
    ②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
    ③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查
    6.高二年級(jí)必修三數(shù)學(xué)知識(shí)點(diǎn)歸納
    系統(tǒng)抽樣
    把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡單隨機(jī)抽樣的辦法抽取。
    K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
    前提條件:總體中個(gè)體的排列對(duì)于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
    系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。