高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí)

字號(hào):


    數(shù)學(xué)是邏輯性很強(qiáng)的一門學(xué)科,同學(xué)們?nèi)粝雽W(xué)好數(shù)學(xué),需要知道一些的學(xué)習(xí)方法以及學(xué)會(huì)總結(jié)數(shù)學(xué)課本知識(shí)點(diǎn)。為各位同學(xué)整理了《高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí)》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí) 篇一
    冪函數(shù)定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
    2.高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí) 篇二
    求函數(shù)定義域
    常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
    ①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽。
    ②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。
    ③當(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。
    ④當(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。
    ⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。
    ⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。
    ⑦對(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。
    3.高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí) 篇三
    集合與元素
    一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。
    例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來(lái)說(shuō),是它的一個(gè)元素;
    而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。
    班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見(jiàn),是集合還是元素,并不是絕對(duì)的。
    解集合問(wèn)題的關(guān)鍵
    解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合;比如用數(shù)軸來(lái)表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
    4.高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí) 篇四
    函數(shù)的值域與值
    函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
    (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
    (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
    (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
    (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.
    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
    (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
    (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
    (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
    5.高一下數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)復(fù)習(xí) 篇五
    函數(shù)的解析式與定義域
    1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
    (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;
    (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
    ①分式的分母不得為零;
    ②偶次方根的被開(kāi)方數(shù)不小于零;
    ③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;
    ④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
    ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.
    應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).
    (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.
    已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.
    2、求函數(shù)的解析式一般有四種情況
    (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.
    (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.
    (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.
    (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.