高一數(shù)學(xué)必修一第五章知識點歸納筆記

字號:

知識點是知識中的最小單位,體的內(nèi)容,有時候也叫“考點”。為各位同學(xué)整理了《高一數(shù)學(xué)必修一第五章知識點歸納筆記》,希望對你的學(xué)習(xí)有所幫助!
    1.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇一
    1、拋物線是軸對稱圖形。對稱軸為直線
    x=—b/2a。
    對稱軸與拋物線的交點為拋物線的頂點P。
    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
    2、拋物線有一個頂點P,坐標為
    P(—b/2a,(4ac—b’2)/4a)
    當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。
    3、二次項系數(shù)a決定拋物線的開口方向和大小。
    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
    當a與b同號時(即ab>0),對稱軸在y軸左;
    當a與b異號時(即ab<0),對稱軸在y軸右。
    5、常數(shù)項c決定拋物線與y軸交點。
    拋物線與y軸交于(0,c)
    6、拋物線與x軸交點個數(shù)
    Δ=b’2—4ac>0時,拋物線與x軸有2個交點。
    Δ=b’2—4ac=0時,拋物線與x軸有1個交點。
    Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
    2.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇二
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    3.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇三
    冪函數(shù)
    定義
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域
    當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域
    性質(zhì)
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
    4.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇四
    函數(shù)圖像(或方程曲線的對稱性)
    (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
    (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
    5.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇五
    函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.
    (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
    (2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
    函數(shù)的三要素:定義域、值域、對應(yīng)法則
    函數(shù)的表示方法:
    (1)解析法:明確函數(shù)的定義域
    (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。
    (3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
    6.高一數(shù)學(xué)必修一第五章知識點歸納筆記 篇六
    反比例函數(shù)
    形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
    自變量x的取值范圍是不等于0的一切實數(shù)。
    反比例函數(shù)圖像性質(zhì):
    反比例函數(shù)的圖像為雙曲線。
    由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
    另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
    上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。
    當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
    當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
    反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。