數(shù)學(xué)這個(gè)科目一直是同學(xué)們又愛又恨的科目,學(xué)的好的同學(xué)靠它來與其它同學(xué)拉開分?jǐn)?shù),學(xué)的差的同學(xué)則在數(shù)學(xué)上失分很多。為各位同學(xué)整理了《高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記》,希望對(duì)你的學(xué)習(xí)有所幫助!
1.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇一
映射
一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”
對(duì)于映射f:A→B來說,則應(yīng)滿足:
(1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);
(3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。
2.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇二
復(fù)數(shù)定義
我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達(dá)式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
a=a+ia為實(shí)部,i為虛部
復(fù)數(shù)運(yùn)算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
復(fù)數(shù)與幾何
①幾何形式
復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
②向量形式
復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR> ③三角形式
復(fù)數(shù)z=a+bi化為三角形式
3.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇四
求函數(shù)的值域或最值
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法:
①觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過觀察直接得到值域或最值.
②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.
④不等式法:利用基本不等式確定函數(shù)的值域或最值.
⑤換元法:通過變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.
⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值.
5.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇五
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形;
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形;
(3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形。
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形;
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方。
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形。
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
1.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇一
映射
一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”
對(duì)于映射f:A→B來說,則應(yīng)滿足:
(1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);
(3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。
2.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇二
復(fù)數(shù)定義
我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達(dá)式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
a=a+ia為實(shí)部,i為虛部
復(fù)數(shù)運(yùn)算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
復(fù)數(shù)與幾何
①幾何形式
復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
②向量形式
復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR> ③三角形式
復(fù)數(shù)z=a+bi化為三角形式
3.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇四
求函數(shù)的值域或最值
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法:
①觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過觀察直接得到值域或最值.
②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.
④不等式法:利用基本不等式確定函數(shù)的值域或最值.
⑤換元法:通過變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.
⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值.
5.高一年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)筆記 篇五
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形;
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形;
(3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形。
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形;
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方。
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形。
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。