作為一名教師,通常需要準備好一份教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
人教版八年級數(shù)學教案篇一
上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學習。
二、展示目標,自主學習:
自學指導:認真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):
1、請比較 與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進行計算的。
4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。
5 、看懂例3,有困難可與同伴交流或問老師。
人教版八年級數(shù)學教案篇二
【知識與技能】
1.會求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對圖象的分析,進一步探究反比例函數(shù)的增減性.
【過程與方法】
經(jīng)歷觀察、分析、交流的過程,逐步提高運用知識的能力.
【情感態(tài)度】
提高學生的觀察、分析能力和對圖形的感知水平.
【教學重點】
會求反比例函數(shù)的解析式.
【教學難點】
反比例函數(shù)圖象和性質(zhì)的運用.
教學過程
一、情景導入,初步認知
【教學說明】復習上節(jié)課的內(nèi)容,同時引入新課.
二、思考探究,獲取新知
1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點p(2,4)
(1)求k的值,并寫出該函數(shù)的表達式;
(2)判斷點a(-2,-4),b(3,5)是否在這個函數(shù)的圖象上;
分析:
(1)題中已知圖象經(jīng)過點p(2,4),即表明把p點坐標代入解析式成立,這樣能求出k,解析式也就確定了.
(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a、b的坐標代入函數(shù)解析式中,如能使解析式成立,則這個點就在函數(shù)圖象上.否則不在.
(3)根據(jù)k的正負性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
(1)k的取值范圍是k0還是k0?說明理由;
(2)如果點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點,試比較y1,y2的大小.分析:
(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
(2)因為點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
【教學說明】通過觀察圖象,使學生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
人教版八年級數(shù)學教案篇三
1.內(nèi)容
正比例函數(shù)的概念.
2.內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.
對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念.
二、目標和目標解析
1.目標
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
2.目標解析
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
三、教學問題診斷分析
正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度.
因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程.
四、教學過程設(shè)計
1.情境引入,初步感知
引言
上一節(jié)我們已經(jīng)學習了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題1 2011年開始運營的京滬高速鐵路全長1 318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導學生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學生熟悉的“路程=速度×時間”.
設(shè)計意圖:讓學生真切感受數(shù)學與實際的聯(lián)系,即數(shù)學理論來源于實際又服務(wù)于實際.幫助學生逐步提高將實際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
設(shè)計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.
對問題(2)的分析解答過程讓學生回答下列問題:
追問1這個問題中兩個變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
設(shè)計意圖:讓學生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊涵在實際問題中,激發(fā)學生探究興趣.對理由的說明學生可能有障礙,此時教師要引導學生回顧函數(shù)概念的學習過程,用函數(shù)的概念來回答:問題中的兩個變量,當其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應(yīng).
追問2 請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3 對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,
人教版八年級數(shù)學教案篇四
根據(jù)大綱要求,結(jié)合本教材特點和學生認知能力,將教學目標確定為:
知識與技能:1、理解因式分解的含義,能判斷一個式子的變形是否為因式分解。
2、熟練運用提取公因式法分解因式。
過程與方法:在教學過程中,體會類比的數(shù)學思想逐步形成獨立思考,主動探索的習慣。
情感態(tài)度與價值觀:通過現(xiàn)實情景,讓學生認識到數(shù)學的應(yīng)用價值,并提高學生關(guān)注生存環(huán)境的環(huán)保意識。
人教版八年級數(shù)學教案篇五
本節(jié)課是在學生學習了平均數(shù)、中位數(shù)、眾數(shù)這類刻畫數(shù)據(jù)集中趨勢的量后,學習刻畫數(shù)據(jù)波動(離散)程度的量,即方差.
當兩組數(shù)據(jù)的平均數(shù)相等或相近時,為了更好的做出選擇經(jīng)常要去了解一組數(shù)據(jù)的波動程度,可以畫折線圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一個量來刻畫,自然引入方差.方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,應(yīng)用它能解決很多實際問題.
教科書根據(jù)農(nóng)科院選擇甜玉米種子的背景提出問題,從統(tǒng)計上看,這個問題是要計算兩組數(shù)據(jù)的平均數(shù)和比較它們的波動情況.為了直觀看出數(shù)據(jù)的波動情況,教科書畫出了兩個散點圖,通過觀察散點圖,可以比較兩組數(shù)據(jù)的波動情況.這兩個散點圖使學生對數(shù)據(jù)偏離平均數(shù)的情況有一個直觀的認識.在此基礎(chǔ)上,教科書引進了利用方差刻畫數(shù)據(jù)離散程度的方法,介紹了方差的公式,并從方差公式的結(jié)構(gòu)上分析了方差是如何刻畫數(shù)據(jù)的波動的,既方差越大,數(shù)據(jù)的波動越大.
因此本節(jié)課的教學重點是:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題.
二、目標和目標解析
(一)教學目標
1.理解方差概念的產(chǎn)生和形成的過程.
2.會用方差的計算公式來比較兩組數(shù)據(jù)的波動大小.
(二)教學目標解析
1.學生能由實際問題中感知,當兩組數(shù)據(jù)的“平均水平”相近時,而實際問題中的意義卻不一樣,需出現(xiàn)另一個量來刻畫,分析數(shù)據(jù)的差異,即方差.
2.學生能根據(jù)已知條件計算方差,比較兩組數(shù)據(jù)的波動大小.
三、教學問題診斷分析
由于這節(jié)課是方差的第一節(jié)課,用方差來刻畫數(shù)據(jù)的離散程度,從方差公式的結(jié)構(gòu)上分析了方差是如何刻畫數(shù)據(jù)的波動的,這些學生理解起來有一定的難度,以致應(yīng)用時常常出現(xiàn)計算的錯誤,教師要剖析公式中每一個元素的意義,以便學生理解和掌握.
本節(jié)課的教學難點為:理解方差的意義.
四、教學過程設(shè)計
(一)情景引入
問題1 教科書第124頁根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
師生活動:學生想到計算它們的平均數(shù).教師把學生分成兩組分別用計算器計算這兩組數(shù)據(jù)的平均數(shù).(請兩名同學到黑板板書)
設(shè)計意圖:讓學生明確農(nóng)科院應(yīng)該選擇哪種甜玉米種子?需關(guān)注平均產(chǎn)量.
追問:怎樣估計這個地區(qū)這兩種甜玉米的平均產(chǎn)量?這能說明甲、乙兩種甜玉米一樣好嗎?
設(shè)計意圖:讓學生明確可以用樣本平均數(shù)估計總體平均數(shù),發(fā)現(xiàn)甲、乙兩種甜玉米的平均產(chǎn)量相差不大,但需選擇哪種甜玉米種子?僅僅知道平均數(shù)是不夠的.
(二)探究新知
問題2 如何考察甜玉米產(chǎn)量的穩(wěn)定性呢?請設(shè)計統(tǒng)計圖直觀地反映出甜玉米產(chǎn)量的分布情況.
師生活動:教師引導學生用折線圖或散點圖反映數(shù)據(jù)的分布情況,畫出折線圖或散點圖后,小組討論,得到甲種甜玉米的產(chǎn)量波動較大,乙種甜玉米的產(chǎn)量波動較小.
問題3 從圖中看出的結(jié)果能否用一個量來刻畫呢?
師生活動:教師直接給出方差公式,并作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小.教師說明,平方是為了在表示各數(shù)據(jù)與其平均數(shù)的偏離程度時,防止正偏差與負偏差的相互抵消.取各個數(shù)據(jù)與其平均數(shù)的差的絕對值也是一種衡量數(shù)據(jù)波動情況統(tǒng)計量,但方差應(yīng)用更廣泛.整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到.
設(shè)計意圖:讓學生明白方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,并從方差公式中得到方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小.
問題4 利用方差公式分析甲、乙兩種甜玉米的波動程度.
師生活動:教師示范:
關(guān)注學生是否會代值到公式中,從結(jié)果中能否知道哪種玉米的波動較大.
設(shè)計意圖:使學生深刻體會到數(shù)學來源于實踐,又反過來作用于實踐,不僅使學生對學習數(shù)學產(chǎn)生濃厚的興趣,而且培養(yǎng)了學生應(yīng)用數(shù)學的意識.
追問:農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
設(shè)計意圖:讓學生類比用樣本的平均數(shù)估計總體的平均數(shù)一樣,用樣本的方差來估計總體的方差,但用樣本的方差來估計總體的方差時,先要計算它們的平均數(shù).
(三)運用新知
例1 在一次芭蕾舞比賽中,甲、乙兩個芭蕾舞團都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲 163 164 164 165 165 166 166 167
乙 163 165 165 166 166 167 168 168
哪個芭蕾舞團女演員的身高更整齊?
師生活動:引導學生分析:(1)題目中“整齊”的含義是什么?學生通過思考可以回答出整齊即身高的波動小,所以要研究兩組數(shù)據(jù)的波動大小,即求方差.
人教版八年級數(shù)學教案篇六
1. 探索并了解正整數(shù)冪的運算 性質(zhì)(同底數(shù)冪的乘法,冪的乘方,積的乘方),并會運用它們進 行計算。
2. 探索并了解單項式與單項式、單項式與多項 式、多項式與多項式相乘的法則,會進行簡單的整式的乘法運算。
3. 會由整式 的乘法推導乘法公式,并能運用公式進行簡單計 算。
4. 理解因式分解的意義及其與整式的乘法之間的關(guān)系,從中體會事物之間可以相互轉(zhuǎn)化的辯證思想。
5. 會用提公因式法、公式法、分組法、十字相乘法進行因式分解(指數(shù)是正整數(shù))。
6. 讓學生主動參與到一些探索過程中去逐步形成獨立思考,主動探索的習慣,提高自己數(shù)學學習興趣。
人教版八年級數(shù)學教案篇七
(1)理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊、對應(yīng)角,掌握并能運用全等三角形的性質(zhì)。
(2)經(jīng)歷探索三角形全等條件的過程,掌握判定三角形全等的基本事實(“邊邊邊”“邊角邊”和“角邊角”)和定理(“角角邊”),能判定兩個三角形全等。
(3)能利用三角形全等證明一些結(jié)論。
(4)探索并證明角平分線的性質(zhì)定理,能運用角的平分線的性質(zhì)。
二、教材分析
中學階段重點研究的兩個平面圖形間的關(guān)系是全等和相似,本章以三角形為例研究全等。對全等三角形研究的問題和研究方法將為后面相似的學習提供思路,而且全等是一種特殊的相似,全等三角形的內(nèi)容是學生學習相似三角形的重要基礎(chǔ)。本章還借助全等三角形進一步培養(yǎng)學生的推理論證能力,主要包括用分析法分析條件與結(jié)論的關(guān)系,用綜合法書寫證明格式,以及掌握證明幾何命題的一般過程。由于利用全等三角形可以證明線段、角等基本幾何元素相等,所以本章的內(nèi)容也是后面將學習的等腰三角形、四邊形、圓等內(nèi)容的基礎(chǔ)。
全等形在幾何中處處可見,為了避免學生將全等的概念局限于全等三角形,本章從現(xiàn)實世界中各種各樣的全等圖形談起。接著,教科書從“重合”的角度定義了全等形和全等三角形的概念,這種定義方式有利于學生借助生活經(jīng)驗直觀地認識所定義的對象,也便于引出全等形的對應(yīng)部分。
性質(zhì)與判定是研究全等三角形的兩個重要方面。教科書由全等三角形的定義直接導出全等三角形的性質(zhì)。在研究全等三角形的判定方法時,由圖形的性質(zhì)與判定在命題陳述上的互逆關(guān)系出發(fā),引出由三條邊分別相等、三個角分別相等判定兩個三角形全等的方法。接下來,教科書構(gòu)建了一個完整的探索三角形全等條件的活動——首先提出探究的問題:由全等三角形的定義可知,滿足三條邊分別相等、三個角分別相等的兩個三角形全等,那么能否減少條件,簡捷地判定兩個三角形全等呢?然后從“一個條件”開始,逐漸增加條件的數(shù)量,分別探究“一個條件”“兩個條件”“三個條件”……能否保證兩個三角形全等。對于“三個條件”的情形,分為三條邊、兩條邊和一個角、兩個角和一條邊以及三個角分別相等的情況依次進行了探究。同時,根據(jù)對各判定方法學習要求的差別設(shè)置了不同的學習方式,有的讓學生通過作圖實驗,猜想結(jié)論,再以基本事實的形式給出判定方法,有的讓學生通過舉反例說明判定方法不成立,有的則由已獲得的判定方法證明新的判定方法。最后,探究了判定直角三角形全等的特殊方法。
由于角的平分線的性質(zhì)可以用全等三角形的知識證明,本章的最后一節(jié)安排了角的平分線的性質(zhì)的內(nèi)容。首先,由平分角的儀器的工作原理引出了一個角的平分線的尺規(guī)作圖,然后探究并證明了角的平分線的性質(zhì),同時總結(jié)了證明一個幾何命題的一般步驟,最后給出了角的平分線的性質(zhì)定理的逆定理。
本章重點研究了三角形全等的判定方法,并在其中滲透了研究幾何圖形的基本問題和方法。在推理論證方面,本章既有直接利用三角形全等的判定方法證明兩個三角形全等的問題,又有通過證明兩個三角形全等推出線段相等或角相等的問題,在問題的設(shè)計中還融入了平行線的性質(zhì)與判定、三角形中邊或角的等量關(guān)系、距離的概念、折紙情境等內(nèi)容,推理論證的難度比《三角形》一章提高了。為了降低學生利用全等三角形的知識進行推理論證的難度,本章設(shè)置了多道例題做出示范,包括怎樣分析條件與結(jié)論的關(guān)系,怎樣書寫證明格式,還總結(jié)了證明幾何命題的一般步驟。
三、教學建議
1.用研究幾何圖形的基本思想和方法貫穿本章的教學
學生在前面的幾何學習中研究了相交線與平行線、三角形等幾何圖形,對于研究幾何圖形的基本問題、思路和方法形成了一定的認識,本章在教學中要充分利用學生已有的研究幾何圖形的思想方法,用幾何思想貫穿全章的教學。例如,在教授本章之前,可以先讓學生根據(jù)研究幾何圖形的經(jīng)驗,思考全等三角形的主要研究內(nèi)容是什么。學生明確了性質(zhì)和判定也是研究全等三角形的兩個重要方面,不僅可以對將學習的內(nèi)容做到心中有數(shù),而且可以幫助他們從數(shù)學內(nèi)部認識研究全等的目的。又如,在教學全等三角形的性質(zhì)之前,可以提示學生:三角形的性質(zhì)描述的是三角形的邊和角所具有的共同特征,那么全等三角形的性質(zhì)研究的是什么內(nèi)容。而在學生學習三角形全等的判定方法之前,可以先讓他們回憶圖形的判定討論的是確定某種圖形需要的條件,從而明確研究全等三角形的判定就是要確定能保證兩個三角形全等的條件:再讓他們利用性質(zhì)和判定在命題陳述上的互逆關(guān)系,得到用三條邊分別相等、三個角分別相等判定兩個三角形全等的方法。再如,活動2中學生獨立研究箏形的性質(zhì)時,要先讓他們回顧研究幾何圖形的基本思路和方法。
2.讓學生充分經(jīng)歷探究過程
本章在編排?定三角形全等的內(nèi)容時構(gòu)建了一個完整的探究活動,包括探究的目標、探究的思路和分階段的探究活動。教學中可以讓學生充分經(jīng)歷這個探究過程,在明確探究目標、形成探究思路的前提下,按計劃逐步探索兩個三角形全等的條件。
人教版八年級數(shù)學教案篇八
知識目標:
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。
能力目標:
(1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
(2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。
情感目標:
充分調(diào)動學生學習的積極性、主動性
單項式與多項式的乘法運算
推測整式乘法的運算法則。
一、復習引入
通過對已學知識的復習引入課題(學生作答)
1、請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
(系數(shù)×系數(shù))×(同字母冪相乘)×單獨的冪
例如:(2a2b3c)(-3ab)
解:原式=[2·(-3)]·(a2·a)·(b3·b)·c
=-6a3b4c
問:如何計算單項式與多項式相乘?例如:2a2·(3a2-5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學生分組討論:前后座為一組;找個別同學作答,教師作評)
結(jié)論單項式與多項式相乘的運算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)·(3ab2–5ab3)
(2)(-4x)·(2x2+3x-1)
(2)原式=(-4x)·2x2+(-4x)·3x+(-4x)·(-1)①
人教版八年級數(shù)學教案篇九
1.理解同分母分式與異分母分式加減法的運算法則,體會類比思想.
2.能運用同分母分式和異分母分式加減運算法則進行運算,體會化歸思想.
分式的加減法法則.
異分母分式的加減運算.
一師一優(yōu)課一課一名師(設(shè)計者:)
一、創(chuàng)設(shè)情景,明確目標
同學們還記得分數(shù)是如何進行加減法運算的嗎?(找同學敘述)
現(xiàn)在我們看下面兩個問題:
請按兩個問題的要求列出代數(shù)式,請觀察兩個代數(shù)式有何特征,如何對這類代數(shù)式進行運算,這就是我們今天所要探究的內(nèi)容.
二、自主學習,指向目標
1.自學教材第139至140頁.
2.學習至此:請完成《學生用書》相應(yīng)部分.
三、合作探究,達成目標
分式加減法運算法則及應(yīng)用
活動一:
1.讓學生觀察課本p140頁思考,并讓學生敘述分數(shù)加減法法則.
2.類似分數(shù)加減法運算法則,推廣可得分式的加減法法則,你能敘述嗎?
展示點評:同分母的分式相加減,分母________,把分子相________.
異分母的分式相加減,先________,變?yōu)開_______分式,再加減.
人教版八年級數(shù)學教案篇十
1.理解分式的基本性質(zhì)。
2.會用分式的基本性質(zhì)將分式變形。
1.重點:理解分式的基本性質(zhì)。
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3.認知難點與突破方法
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數(shù)學教案篇十一
1、理解分式的基本性質(zhì)。
2、會用分式的基本性質(zhì)將分式變形。
1、重點:理解分式的基本性質(zhì)。
2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認知難點與突破方法
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數(shù)學教案篇十二
第一步:課前引入:
前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
請同學們看下面問題:
no1、一家鞋店在一段時間內(nèi)銷售了某種女鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:
人教版八年級數(shù)學教案篇十三
1.掌握等腰三角形的有關(guān)概念和性質(zhì),運用等腰三角形的性質(zhì)解決問題。
2. 通過學生之間的交流活動,培養(yǎng)學生主動與他人合作 交流的意識和良好的學習習慣。
【學習重點】
探索和掌握等腰三角形的性質(zhì)及其應(yīng)用。
【學習難點】
等腰三角形的性質(zhì)的應(yīng)用。
【學習 過程】
一、你知道嗎?
等腰三角形的有關(guān)概念
人教版八年級數(shù)學教案篇十四
1、探究活動一
內(nèi)容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
學生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數(shù)學就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。
效果:1.探究活動一讓學生獨立觀察,自主探究,培養(yǎng)獨立思考的習慣和能力;2.通過探索發(fā)現(xiàn),讓學生得到成功體驗,激發(fā)進一步探究的熱情和愿望。
2、探究活動二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀察下面兩幅圖:
(2)填表:
a的面積
(單位面積)b的面積
(單位面積)c的面積
(單位面積)
左圖
右圖
(3)你是怎樣得到正方形c的面積的?與同伴交流(學生可能會做出多種方法,教師應(yīng)給予充分肯定)。
學生的方法可能有:
方法一:
如圖1,將正方形c分割為四個全等的直角三角形和一個小正方形。
方法二:
如圖2,在正方形c外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。
方法三:
如圖3,正方形c中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。
(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形c的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。
效果:學生通過充分討論探究,在突破正方形c的面積計算這一難點后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長,,來表示上圖中正方形的面積嗎?
(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。
意圖:議一議意在讓學生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學生歸納表述結(jié)論,可培養(yǎng)學生的抽象概括能力及語言表達能力;2.通過作圖培養(yǎng)學生的動手實踐能力。
人教版八年級數(shù)學教案篇一
上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學習。
二、展示目標,自主學習:
自學指導:認真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):
1、請比較 與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進行計算的。
4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。
5 、看懂例3,有困難可與同伴交流或問老師。
人教版八年級數(shù)學教案篇二
【知識與技能】
1.會求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過對圖象的分析,進一步探究反比例函數(shù)的增減性.
【過程與方法】
經(jīng)歷觀察、分析、交流的過程,逐步提高運用知識的能力.
【情感態(tài)度】
提高學生的觀察、分析能力和對圖形的感知水平.
【教學重點】
會求反比例函數(shù)的解析式.
【教學難點】
反比例函數(shù)圖象和性質(zhì)的運用.
教學過程
一、情景導入,初步認知
【教學說明】復習上節(jié)課的內(nèi)容,同時引入新課.
二、思考探究,獲取新知
1.思考:已知反比例函數(shù)y=的圖象經(jīng)過點p(2,4)
(1)求k的值,并寫出該函數(shù)的表達式;
(2)判斷點a(-2,-4),b(3,5)是否在這個函數(shù)的圖象上;
分析:
(1)題中已知圖象經(jīng)過點p(2,4),即表明把p點坐標代入解析式成立,這樣能求出k,解析式也就確定了.
(2)要判斷a、b是否在這條函數(shù)圖象上,就是把a、b的坐標代入函數(shù)解析式中,如能使解析式成立,則這個點就在函數(shù)圖象上.否則不在.
(3)根據(jù)k的正負性,利用反比例函數(shù)的性質(zhì)來判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
(1)k的取值范圍是k0還是k0?說明理由;
(2)如果點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點,試比較y1,y2的大小.分析:
(1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
(2)因為點a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點且-30,-20.所以點a、b都位于第三象限,又因為-3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
【教學說明】通過觀察圖象,使學生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
人教版八年級數(shù)學教案篇三
1.內(nèi)容
正比例函數(shù)的概念.
2.內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學習的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學習,為后續(xù)類比學習一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.
對正比例函數(shù)概念的學習,既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學重點:正比例函數(shù)的概念.
二、目標和目標解析
1.目標
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
2.目標解析
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達成目標(2)的標志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
三、教學問題診斷分析
正比例函數(shù)是是初中學生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程學生有一定難度.
因此本節(jié)課的教學難點是:對正比例函數(shù)基本特征的認識和正比例函數(shù)概念的抽象歸納過程.
四、教學過程設(shè)計
1.情境引入,初步感知
引言
上一節(jié)我們已經(jīng)學習了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題1 2011年開始運營的京滬高速鐵路全長1 318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導學生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學生熟悉的“路程=速度×時間”.
設(shè)計意圖:讓學生真切感受數(shù)學與實際的聯(lián)系,即數(shù)學理論來源于實際又服務(wù)于實際.幫助學生逐步提高將實際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
設(shè)計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.
對問題(2)的分析解答過程讓學生回答下列問題:
追問1這個問題中兩個變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
設(shè)計意圖:讓學生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊涵在實際問題中,激發(fā)學生探究興趣.對理由的說明學生可能有障礙,此時教師要引導學生回顧函數(shù)概念的學習過程,用函數(shù)的概念來回答:問題中的兩個變量,當其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應(yīng).
追問2 請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3 對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,
人教版八年級數(shù)學教案篇四
根據(jù)大綱要求,結(jié)合本教材特點和學生認知能力,將教學目標確定為:
知識與技能:1、理解因式分解的含義,能判斷一個式子的變形是否為因式分解。
2、熟練運用提取公因式法分解因式。
過程與方法:在教學過程中,體會類比的數(shù)學思想逐步形成獨立思考,主動探索的習慣。
情感態(tài)度與價值觀:通過現(xiàn)實情景,讓學生認識到數(shù)學的應(yīng)用價值,并提高學生關(guān)注生存環(huán)境的環(huán)保意識。
人教版八年級數(shù)學教案篇五
本節(jié)課是在學生學習了平均數(shù)、中位數(shù)、眾數(shù)這類刻畫數(shù)據(jù)集中趨勢的量后,學習刻畫數(shù)據(jù)波動(離散)程度的量,即方差.
當兩組數(shù)據(jù)的平均數(shù)相等或相近時,為了更好的做出選擇經(jīng)常要去了解一組數(shù)據(jù)的波動程度,可以畫折線圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一個量來刻畫,自然引入方差.方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,應(yīng)用它能解決很多實際問題.
教科書根據(jù)農(nóng)科院選擇甜玉米種子的背景提出問題,從統(tǒng)計上看,這個問題是要計算兩組數(shù)據(jù)的平均數(shù)和比較它們的波動情況.為了直觀看出數(shù)據(jù)的波動情況,教科書畫出了兩個散點圖,通過觀察散點圖,可以比較兩組數(shù)據(jù)的波動情況.這兩個散點圖使學生對數(shù)據(jù)偏離平均數(shù)的情況有一個直觀的認識.在此基礎(chǔ)上,教科書引進了利用方差刻畫數(shù)據(jù)離散程度的方法,介紹了方差的公式,并從方差公式的結(jié)構(gòu)上分析了方差是如何刻畫數(shù)據(jù)的波動的,既方差越大,數(shù)據(jù)的波動越大.
因此本節(jié)課的教學重點是:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題.
二、目標和目標解析
(一)教學目標
1.理解方差概念的產(chǎn)生和形成的過程.
2.會用方差的計算公式來比較兩組數(shù)據(jù)的波動大小.
(二)教學目標解析
1.學生能由實際問題中感知,當兩組數(shù)據(jù)的“平均水平”相近時,而實際問題中的意義卻不一樣,需出現(xiàn)另一個量來刻畫,分析數(shù)據(jù)的差異,即方差.
2.學生能根據(jù)已知條件計算方差,比較兩組數(shù)據(jù)的波動大小.
三、教學問題診斷分析
由于這節(jié)課是方差的第一節(jié)課,用方差來刻畫數(shù)據(jù)的離散程度,從方差公式的結(jié)構(gòu)上分析了方差是如何刻畫數(shù)據(jù)的波動的,這些學生理解起來有一定的難度,以致應(yīng)用時常常出現(xiàn)計算的錯誤,教師要剖析公式中每一個元素的意義,以便學生理解和掌握.
本節(jié)課的教學難點為:理解方差的意義.
四、教學過程設(shè)計
(一)情景引入
問題1 教科書第124頁根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
師生活動:學生想到計算它們的平均數(shù).教師把學生分成兩組分別用計算器計算這兩組數(shù)據(jù)的平均數(shù).(請兩名同學到黑板板書)
設(shè)計意圖:讓學生明確農(nóng)科院應(yīng)該選擇哪種甜玉米種子?需關(guān)注平均產(chǎn)量.
追問:怎樣估計這個地區(qū)這兩種甜玉米的平均產(chǎn)量?這能說明甲、乙兩種甜玉米一樣好嗎?
設(shè)計意圖:讓學生明確可以用樣本平均數(shù)估計總體平均數(shù),發(fā)現(xiàn)甲、乙兩種甜玉米的平均產(chǎn)量相差不大,但需選擇哪種甜玉米種子?僅僅知道平均數(shù)是不夠的.
(二)探究新知
問題2 如何考察甜玉米產(chǎn)量的穩(wěn)定性呢?請設(shè)計統(tǒng)計圖直觀地反映出甜玉米產(chǎn)量的分布情況.
師生活動:教師引導學生用折線圖或散點圖反映數(shù)據(jù)的分布情況,畫出折線圖或散點圖后,小組討論,得到甲種甜玉米的產(chǎn)量波動較大,乙種甜玉米的產(chǎn)量波動較小.
問題3 從圖中看出的結(jié)果能否用一個量來刻畫呢?
師生活動:教師直接給出方差公式,并作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小.教師說明,平方是為了在表示各數(shù)據(jù)與其平均數(shù)的偏離程度時,防止正偏差與負偏差的相互抵消.取各個數(shù)據(jù)與其平均數(shù)的差的絕對值也是一種衡量數(shù)據(jù)波動情況統(tǒng)計量,但方差應(yīng)用更廣泛.整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到.
設(shè)計意圖:讓學生明白方差是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,并從方差公式中得到方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小.
問題4 利用方差公式分析甲、乙兩種甜玉米的波動程度.
師生活動:教師示范:
關(guān)注學生是否會代值到公式中,從結(jié)果中能否知道哪種玉米的波動較大.
設(shè)計意圖:使學生深刻體會到數(shù)學來源于實踐,又反過來作用于實踐,不僅使學生對學習數(shù)學產(chǎn)生濃厚的興趣,而且培養(yǎng)了學生應(yīng)用數(shù)學的意識.
追問:農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
設(shè)計意圖:讓學生類比用樣本的平均數(shù)估計總體的平均數(shù)一樣,用樣本的方差來估計總體的方差,但用樣本的方差來估計總體的方差時,先要計算它們的平均數(shù).
(三)運用新知
例1 在一次芭蕾舞比賽中,甲、乙兩個芭蕾舞團都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲 163 164 164 165 165 166 166 167
乙 163 165 165 166 166 167 168 168
哪個芭蕾舞團女演員的身高更整齊?
師生活動:引導學生分析:(1)題目中“整齊”的含義是什么?學生通過思考可以回答出整齊即身高的波動小,所以要研究兩組數(shù)據(jù)的波動大小,即求方差.
人教版八年級數(shù)學教案篇六
1. 探索并了解正整數(shù)冪的運算 性質(zhì)(同底數(shù)冪的乘法,冪的乘方,積的乘方),并會運用它們進 行計算。
2. 探索并了解單項式與單項式、單項式與多項 式、多項式與多項式相乘的法則,會進行簡單的整式的乘法運算。
3. 會由整式 的乘法推導乘法公式,并能運用公式進行簡單計 算。
4. 理解因式分解的意義及其與整式的乘法之間的關(guān)系,從中體會事物之間可以相互轉(zhuǎn)化的辯證思想。
5. 會用提公因式法、公式法、分組法、十字相乘法進行因式分解(指數(shù)是正整數(shù))。
6. 讓學生主動參與到一些探索過程中去逐步形成獨立思考,主動探索的習慣,提高自己數(shù)學學習興趣。
人教版八年級數(shù)學教案篇七
(1)理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊、對應(yīng)角,掌握并能運用全等三角形的性質(zhì)。
(2)經(jīng)歷探索三角形全等條件的過程,掌握判定三角形全等的基本事實(“邊邊邊”“邊角邊”和“角邊角”)和定理(“角角邊”),能判定兩個三角形全等。
(3)能利用三角形全等證明一些結(jié)論。
(4)探索并證明角平分線的性質(zhì)定理,能運用角的平分線的性質(zhì)。
二、教材分析
中學階段重點研究的兩個平面圖形間的關(guān)系是全等和相似,本章以三角形為例研究全等。對全等三角形研究的問題和研究方法將為后面相似的學習提供思路,而且全等是一種特殊的相似,全等三角形的內(nèi)容是學生學習相似三角形的重要基礎(chǔ)。本章還借助全等三角形進一步培養(yǎng)學生的推理論證能力,主要包括用分析法分析條件與結(jié)論的關(guān)系,用綜合法書寫證明格式,以及掌握證明幾何命題的一般過程。由于利用全等三角形可以證明線段、角等基本幾何元素相等,所以本章的內(nèi)容也是后面將學習的等腰三角形、四邊形、圓等內(nèi)容的基礎(chǔ)。
全等形在幾何中處處可見,為了避免學生將全等的概念局限于全等三角形,本章從現(xiàn)實世界中各種各樣的全等圖形談起。接著,教科書從“重合”的角度定義了全等形和全等三角形的概念,這種定義方式有利于學生借助生活經(jīng)驗直觀地認識所定義的對象,也便于引出全等形的對應(yīng)部分。
性質(zhì)與判定是研究全等三角形的兩個重要方面。教科書由全等三角形的定義直接導出全等三角形的性質(zhì)。在研究全等三角形的判定方法時,由圖形的性質(zhì)與判定在命題陳述上的互逆關(guān)系出發(fā),引出由三條邊分別相等、三個角分別相等判定兩個三角形全等的方法。接下來,教科書構(gòu)建了一個完整的探索三角形全等條件的活動——首先提出探究的問題:由全等三角形的定義可知,滿足三條邊分別相等、三個角分別相等的兩個三角形全等,那么能否減少條件,簡捷地判定兩個三角形全等呢?然后從“一個條件”開始,逐漸增加條件的數(shù)量,分別探究“一個條件”“兩個條件”“三個條件”……能否保證兩個三角形全等。對于“三個條件”的情形,分為三條邊、兩條邊和一個角、兩個角和一條邊以及三個角分別相等的情況依次進行了探究。同時,根據(jù)對各判定方法學習要求的差別設(shè)置了不同的學習方式,有的讓學生通過作圖實驗,猜想結(jié)論,再以基本事實的形式給出判定方法,有的讓學生通過舉反例說明判定方法不成立,有的則由已獲得的判定方法證明新的判定方法。最后,探究了判定直角三角形全等的特殊方法。
由于角的平分線的性質(zhì)可以用全等三角形的知識證明,本章的最后一節(jié)安排了角的平分線的性質(zhì)的內(nèi)容。首先,由平分角的儀器的工作原理引出了一個角的平分線的尺規(guī)作圖,然后探究并證明了角的平分線的性質(zhì),同時總結(jié)了證明一個幾何命題的一般步驟,最后給出了角的平分線的性質(zhì)定理的逆定理。
本章重點研究了三角形全等的判定方法,并在其中滲透了研究幾何圖形的基本問題和方法。在推理論證方面,本章既有直接利用三角形全等的判定方法證明兩個三角形全等的問題,又有通過證明兩個三角形全等推出線段相等或角相等的問題,在問題的設(shè)計中還融入了平行線的性質(zhì)與判定、三角形中邊或角的等量關(guān)系、距離的概念、折紙情境等內(nèi)容,推理論證的難度比《三角形》一章提高了。為了降低學生利用全等三角形的知識進行推理論證的難度,本章設(shè)置了多道例題做出示范,包括怎樣分析條件與結(jié)論的關(guān)系,怎樣書寫證明格式,還總結(jié)了證明幾何命題的一般步驟。
三、教學建議
1.用研究幾何圖形的基本思想和方法貫穿本章的教學
學生在前面的幾何學習中研究了相交線與平行線、三角形等幾何圖形,對于研究幾何圖形的基本問題、思路和方法形成了一定的認識,本章在教學中要充分利用學生已有的研究幾何圖形的思想方法,用幾何思想貫穿全章的教學。例如,在教授本章之前,可以先讓學生根據(jù)研究幾何圖形的經(jīng)驗,思考全等三角形的主要研究內(nèi)容是什么。學生明確了性質(zhì)和判定也是研究全等三角形的兩個重要方面,不僅可以對將學習的內(nèi)容做到心中有數(shù),而且可以幫助他們從數(shù)學內(nèi)部認識研究全等的目的。又如,在教學全等三角形的性質(zhì)之前,可以提示學生:三角形的性質(zhì)描述的是三角形的邊和角所具有的共同特征,那么全等三角形的性質(zhì)研究的是什么內(nèi)容。而在學生學習三角形全等的判定方法之前,可以先讓他們回憶圖形的判定討論的是確定某種圖形需要的條件,從而明確研究全等三角形的判定就是要確定能保證兩個三角形全等的條件:再讓他們利用性質(zhì)和判定在命題陳述上的互逆關(guān)系,得到用三條邊分別相等、三個角分別相等判定兩個三角形全等的方法。再如,活動2中學生獨立研究箏形的性質(zhì)時,要先讓他們回顧研究幾何圖形的基本思路和方法。
2.讓學生充分經(jīng)歷探究過程
本章在編排?定三角形全等的內(nèi)容時構(gòu)建了一個完整的探究活動,包括探究的目標、探究的思路和分階段的探究活動。教學中可以讓學生充分經(jīng)歷這個探究過程,在明確探究目標、形成探究思路的前提下,按計劃逐步探索兩個三角形全等的條件。
人教版八年級數(shù)學教案篇八
知識目標:
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。
能力目標:
(1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
(2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。
情感目標:
充分調(diào)動學生學習的積極性、主動性
單項式與多項式的乘法運算
推測整式乘法的運算法則。
一、復習引入
通過對已學知識的復習引入課題(學生作答)
1、請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
(系數(shù)×系數(shù))×(同字母冪相乘)×單獨的冪
例如:(2a2b3c)(-3ab)
解:原式=[2·(-3)]·(a2·a)·(b3·b)·c
=-6a3b4c
問:如何計算單項式與多項式相乘?例如:2a2·(3a2-5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學生分組討論:前后座為一組;找個別同學作答,教師作評)
結(jié)論單項式與多項式相乘的運算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)·(3ab2–5ab3)
(2)(-4x)·(2x2+3x-1)
(2)原式=(-4x)·2x2+(-4x)·3x+(-4x)·(-1)①
人教版八年級數(shù)學教案篇九
1.理解同分母分式與異分母分式加減法的運算法則,體會類比思想.
2.能運用同分母分式和異分母分式加減運算法則進行運算,體會化歸思想.
分式的加減法法則.
異分母分式的加減運算.
一師一優(yōu)課一課一名師(設(shè)計者:)
一、創(chuàng)設(shè)情景,明確目標
同學們還記得分數(shù)是如何進行加減法運算的嗎?(找同學敘述)
現(xiàn)在我們看下面兩個問題:
請按兩個問題的要求列出代數(shù)式,請觀察兩個代數(shù)式有何特征,如何對這類代數(shù)式進行運算,這就是我們今天所要探究的內(nèi)容.
二、自主學習,指向目標
1.自學教材第139至140頁.
2.學習至此:請完成《學生用書》相應(yīng)部分.
三、合作探究,達成目標
分式加減法運算法則及應(yīng)用
活動一:
1.讓學生觀察課本p140頁思考,并讓學生敘述分數(shù)加減法法則.
2.類似分數(shù)加減法運算法則,推廣可得分式的加減法法則,你能敘述嗎?
展示點評:同分母的分式相加減,分母________,把分子相________.
異分母的分式相加減,先________,變?yōu)開_______分式,再加減.
人教版八年級數(shù)學教案篇十
1.理解分式的基本性質(zhì)。
2.會用分式的基本性質(zhì)將分式變形。
1.重點:理解分式的基本性質(zhì)。
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3.認知難點與突破方法
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數(shù)學教案篇十一
1、理解分式的基本性質(zhì)。
2、會用分式的基本性質(zhì)將分式變形。
1、重點:理解分式的基本性質(zhì)。
2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認知難點與突破方法
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數(shù)學教案篇十二
第一步:課前引入:
前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
請同學們看下面問題:
no1、一家鞋店在一段時間內(nèi)銷售了某種女鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:
人教版八年級數(shù)學教案篇十三
1.掌握等腰三角形的有關(guān)概念和性質(zhì),運用等腰三角形的性質(zhì)解決問題。
2. 通過學生之間的交流活動,培養(yǎng)學生主動與他人合作 交流的意識和良好的學習習慣。
【學習重點】
探索和掌握等腰三角形的性質(zhì)及其應(yīng)用。
【學習難點】
等腰三角形的性質(zhì)的應(yīng)用。
【學習 過程】
一、你知道嗎?
等腰三角形的有關(guān)概念
人教版八年級數(shù)學教案篇十四
1、探究活動一
內(nèi)容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
學生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數(shù)學就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。
效果:1.探究活動一讓學生獨立觀察,自主探究,培養(yǎng)獨立思考的習慣和能力;2.通過探索發(fā)現(xiàn),讓學生得到成功體驗,激發(fā)進一步探究的熱情和愿望。
2、探究活動二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀察下面兩幅圖:
(2)填表:
a的面積
(單位面積)b的面積
(單位面積)c的面積
(單位面積)
左圖
右圖
(3)你是怎樣得到正方形c的面積的?與同伴交流(學生可能會做出多種方法,教師應(yīng)給予充分肯定)。
學生的方法可能有:
方法一:
如圖1,將正方形c分割為四個全等的直角三角形和一個小正方形。
方法二:
如圖2,在正方形c外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。
方法三:
如圖3,正方形c中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。
(4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形c的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。
效果:學生通過充分討論探究,在突破正方形c的面積計算這一難點后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長,,來表示上圖中正方形的面積嗎?
(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。
意圖:議一議意在讓學生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學生歸納表述結(jié)論,可培養(yǎng)學生的抽象概括能力及語言表達能力;2.通過作圖培養(yǎng)學生的動手實踐能力。

