最新高中數(shù)學(xué)教案全套 高中數(shù)學(xué)教案(精選11篇)

字號:

    作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?這里我給大家分享一些最新的教案范文,方便大家學(xué)習(xí)。
    高中數(shù)學(xué)教案全套篇一
    1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
    本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
    1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
    (一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)
    了解:初步知道知識的含義及其簡單應(yīng)用。
    理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
    計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
    空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
    分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
    數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
    (二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
    第2單元不等式(8學(xué)時(shí))
    第3單元函數(shù)(12學(xué)時(shí))
    第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時(shí))
    第5單元三角函數(shù)(18學(xué)時(shí))
    第6單元數(shù)列(10學(xué)時(shí))
    第7單元平面向量(矢量)(10學(xué)時(shí))
    第8單元直線和圓的方程(18學(xué)時(shí))
    第9單元立體幾何(14學(xué)時(shí))
    第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
    2.職業(yè)模塊
    第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
    第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
    第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
    高中數(shù)學(xué)教案全套篇二
    【知識與技能】
    在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
    【過程與方法】
    通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
    【情感態(tài)度與價(jià)值觀】
    滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
    【重點(diǎn)】
    掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
    【難點(diǎn)】
    二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的'關(guān)系。
    三、教學(xué)過程
    (一)復(fù)習(xí)舊知,引出課題
    1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
    2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
    高中數(shù)學(xué)教案全套篇三
    熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
    教學(xué)重難點(diǎn)
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    兩角差的余弦公式
    用- b代替b看看有什么結(jié)果?
    高中數(shù)學(xué)教案全套篇四
    1、知識與技能
    (1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
    (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
    2、過程與方法
    學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
    3、情感態(tài)度與價(jià)值觀
    (1)提高空間想象力與直觀感受。
    (2)體會對比在學(xué)習(xí)中的作用。
    (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
    重點(diǎn)、難點(diǎn):用斜二測畫法畫空間幾何值的直觀圖。
    1、學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
    2、教學(xué)用具:三角板、圓規(guī)
    (一)創(chuàng)設(shè)情景,揭示課題
    1、我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱
    把實(shí)物圓柱放在講臺上讓學(xué)生畫。
    2、學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
    (二)研探新知
    1、例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評。
    畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。
    練習(xí)反饋
    根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
    2、例2,用斜二測畫法畫水平放置的圓的直觀圖
    教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的`直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
    教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
    3、探求空間幾何體的直觀圖的畫法
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
    4、平行投影與中心投影
    投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
    5、鞏固練習(xí),課本p16練習(xí)1(1),2,3,4
    三、歸納整理
    學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
    四、作業(yè)
    1、書畫作業(yè),課本p17練習(xí)第5題
    高中數(shù)學(xué)教案全套篇五
    掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
    (一)主要知識:
    1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略
    1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的.知識解決有關(guān)應(yīng)用問題,
    2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
    略
    高中數(shù)學(xué)教案全套篇六
    (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
    (2)理解直線與二元一次方程的關(guān)系及其證明
    :計(jì)算機(jī)
    :啟發(fā)引導(dǎo)法,討論法
    下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:
    (一)引入的設(shè)計(jì)
    前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
    問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
    答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
    肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:
    問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?
    啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)??各小組可以討論討論.
    學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
    【問題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
    學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
    經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
    思路一:…
    思路二:…
    ……
    教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
    當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
    當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
    學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
    綜合兩種情況,我們得出如下結(jié)論:
    同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
    學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
    這樣上邊的結(jié)論可以表述如下:
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
    【問題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評價(jià)不同思路,達(dá)成共識:
    (1)當(dāng) 時(shí),方程可化為
    這是表示斜率為 、在 軸上的截距為 的直線.
    (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為
    這表示一條與 軸垂直的直線.
    因此,得到結(jié)論:
    為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.
    【動(dòng)畫演示】
    演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
    (三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
    略
    高中數(shù)學(xué)教案全套篇七
    掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
    (一)主要知識:
    1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略
    1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識解決有關(guān)應(yīng)用問題,
    2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
    高中數(shù)學(xué)教案全套篇八
    了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。
    漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。
    2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
    3、經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。
    4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
    5、與雙曲線有公共的漸近線,且經(jīng)過點(diǎn)的雙曲線的方程為
    1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。
    2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無關(guān)的定值,試對雙曲線寫出具有類似特性的性質(zhì),并加以證明。
    3、設(shè)雙曲線的半焦距為,直線過兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。
    1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
    2、與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。
    3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
    4、過雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。
    1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
    2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。
    3、雙曲線的焦距為
    4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則
    5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過點(diǎn)的雙曲線的離心率為。
    高中數(shù)學(xué)教案全套篇九
    【知識與技能】
    在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的'一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
    【過程與方法】
    通過對方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
    【情感態(tài)度與價(jià)值觀】
    滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
    【重點(diǎn)】
    掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
    【難點(diǎn)】
    二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
    三、教學(xué)過程
    (一)復(fù)習(xí)舊知,引出課題
    1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
    2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
    高中數(shù)學(xué)教案全套篇十
    (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
    (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
    重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
    難點(diǎn)是解組合的應(yīng)用題.
    (一)導(dǎo)入新課
    (教師活動(dòng))提出下列思考問題,打出字幕.
    [字幕]一條鐵路線上有6個(gè)火車站
    (1)需準(zhǔn)備多少種不同的普通客車票?
    (學(xué)生活動(dòng))討論并回答
    答案提示:
    (1)排列;
    (2)組合
    [評述]問題
    (二)新課講授
    [提出問題創(chuàng)設(shè)情境]
    (教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文
    [字幕]
    1.排列的定義是什么?
    2.舉例說明一個(gè)組合是什么?
    3.一個(gè)組合與一個(gè)排列有何區(qū)別?
    (學(xué)生活動(dòng))閱讀回答.
    (教師活動(dòng))對照課文,逐一評析.
    設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境
    【歸納概括建立新知】
    (教師活動(dòng))承接上述問題的回答,展示下面知識.
    (學(xué)生活動(dòng))傾聽、思索、記錄
    (教師活動(dòng))提出思考問題
    [投影]與的關(guān)系如何?
    (師生活動(dòng))共同探討.求從個(gè)不同元素中取出個(gè)元素的排列數(shù),可分為以下兩步:
    第1步,先求出從這個(gè)不同元素中取出個(gè)元素的組合數(shù)為;
    第2步,求每一個(gè)組合中個(gè)元素的全排列數(shù)為
    根據(jù)分步計(jì)數(shù)原理,得到
    [字幕]公式1:
    公式2:
    (學(xué)生活動(dòng))驗(yàn)算,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票
    (三)小結(jié)
    (師生活動(dòng))共同小結(jié)
    本節(jié)主要內(nèi)容有
    1.組合概念
    2.組合數(shù)計(jì)算的兩個(gè)公式
    (四)布置作業(yè)
    1.課本作業(yè):習(xí)題103第1(1)、(4),3題
    3.研究性題:
    (五)課后點(diǎn)評
    3.能組成(注意不能用點(diǎn)為頂點(diǎn))個(gè)四邊形,個(gè)三角形.
    探究活動(dòng)
    解設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解
    高中數(shù)學(xué)教案全套篇十一
    熟悉兩角和與差的正、余公式的.推導(dǎo)過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
    教學(xué)重難點(diǎn)
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    兩角差的余弦公式
    用-b代替b看看有什么結(jié)果?