2023年高二下數(shù)學(xué)教案版電子書范文(17篇)

字號:

    編寫教案時,要注意選擇適當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段,以便達到預(yù)期的教學(xué)效果。教案的編寫要注意教學(xué)資源的充分利用,提升教學(xué)效益。以上教案范文僅供參考,教師在編寫教案時需要根據(jù)實際情況進行有針對性的調(diào)整。
    高二下數(shù)學(xué)教案版電子書篇一
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    1、知識與技能:
    (1)推廣角的概念、引入大于角和負(fù)角;
    (2)理解并掌握正角、負(fù)角、零角的定義;
    (3)理解任意角以及象限角的概念;
    (4)掌握所有與角終邊相同的角(包括角)的表示方法;
    (5)樹立運動變化觀點,深刻理解推廣后的角的概念;
    (6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣;
    (7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。
    2、過程與方法:
    通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
    3、情態(tài)與價值:
    通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認(rèn)識,即有正角、負(fù)角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認(rèn)識事物。
    教學(xué)重難點
    重點:理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。
    難點:終邊相同的角的表示。
    教學(xué)工具
    投影儀等。
    教學(xué)過程
    【創(chuàng)設(shè)情境】
    我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
    【探究新知】
    1.初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?
    [展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。
    [展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle)。
    3.學(xué)習(xí)小結(jié):
    (1)你知道角是如何推廣的嗎?
    (2)象限角是如何定義的呢?
    (3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。
    課后習(xí)題
    作業(yè):
    1、習(xí)題1.1a組第1,2,3題.
    2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,
    進一步理解具有相同終邊的角的特點.
    板書
    略
    高二下數(shù)學(xué)教案版電子書篇二
    學(xué)習(xí)目標(biāo):
    1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法
    2、能敘述隨機變量的定義
    3、能說出隨機變量與函數(shù)的關(guān)系,
    4、能夠把一個隨機試驗結(jié)果用隨機變量表示
    重點:能夠把一個隨機試驗結(jié)果用隨機變量表示
    難點:隨機事件概念的透徹理解及對隨機變量引入目的的認(rèn)識:
    環(huán)節(jié)一:隨機變量的定義
    1.通過生活中的一些隨機現(xiàn)象,能夠概括出隨機變量的定義
    2能敘述隨機變量的定義
    3能說出隨機變量與函數(shù)的區(qū)別與聯(lián)系
    一、閱讀課本33頁問題提出和分析理解,回答下列問題?
    1、了解一個隨機現(xiàn)象的規(guī)律具體指的是什么?
    2、分析理解中的兩個隨機現(xiàn)象的隨機試驗結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?
    總結(jié):
    3、隨機變量
    (1)定義:
    這種對應(yīng)稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結(jié)果所組成的
    到的映射。
    (2)表示:隨機變量常用大寫字母.等表示.
    (3)隨機變量與函數(shù)的區(qū)別與聯(lián)系
    函數(shù)隨機變量
    自變量
    因變量
    因變量的范圍
    相同點都是映射都是映射
    環(huán)節(jié)二隨機變量的應(yīng)用
    1、能正確寫出隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機變量的描述隨機事件
    例1:已知在10件產(chǎn)品中有2件不合格品。現(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機變量的學(xué)案.這是一個隨機現(xiàn)象。(1)寫成該隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機變量來描述上述結(jié)果。
    例2連續(xù)投擲一枚均勻的硬幣兩次,用x表示這兩次正面朝上的次數(shù),則x是一個隨機變
    量,分別說明下列集合所代表的隨機事件:
    (1){x=0}(2){x=1}
    (3){x2}(4){x0}
    變式:連續(xù)投擲一枚均勻的硬幣三次,用x表示這三次正面朝上的次數(shù),則x是一個隨機變量,x的可能取值是?并說明這些值所表示的隨機試驗的結(jié)果.
    練習(xí):寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結(jié)果。
    (1)從學(xué)?;丶乙?jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);
    小結(jié)(對標(biāo))
    高二下數(shù)學(xué)教案版電子書篇三
    一、指導(dǎo)思想:
    全面貫徹教育方針,深入實施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進一步體會數(shù)學(xué)對發(fā)展自己思維能力的作用,體會數(shù)學(xué)對推動社會進步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價值,提高數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。
    二、教學(xué)具體目標(biāo)
    1、期中考前完成必修3、選修2-3第一章
    2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
    3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
    三、教材特點:
    我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強調(diào)了問題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過程。具體特點如下:
    1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
    2、“問題性”:專門安排了“課題學(xué)習(xí)”和“探究活動”,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
    4、“時代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
    5、“人文應(yīng)用價值性”:編寫了一些閱讀材料,開拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營養(yǎng)和動力,全面感受數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
    四、教法分析:
    1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達到培養(yǎng)其興趣的目的。
    2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。
    3、在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
    五、教學(xué)措施:
    1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。
    2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
    3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。
    4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
    5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法
    6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
    六、教學(xué)進度安排(略)?
    高二下數(shù)學(xué)教案版電子書篇四
    重點與難點分析:
    本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結(jié)構(gòu)完整、知識理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動,將教與學(xué)融為一體。具體說明如下:
    (1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教
    本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
    (2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
    本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。
    公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
    綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點:一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
    教法建議:
    由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”
    本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
    (2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
    本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習(xí)的多層次變化。
    公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調(diào)三個方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
    綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。
    這里注意兩點:
    一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴(yán)格書寫。
    二是給出的綜合題目有一定的難度,教學(xué)時,要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
    高二下數(shù)學(xué)教案版電子書篇五
    掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
    (一)主要知識:
    掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略
    1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的'知識解決有關(guān)應(yīng)用問題,
    2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。
    高二下數(shù)學(xué)教案版電子書篇六
    1.掌握常用基本不等式,并能用之證明不等式和求最值;
    2.掌握含絕對值的不等式的性質(zhì);
    本章知識點
    幾類常見的問題
    (一) 含參數(shù)的不等式的解法
    例1解關(guān)于x的不等式 .
    例2解關(guān)于x的不等式 .
    例3解關(guān)于x的不等式 .
    例4解關(guān)于x的不等式
    例5 滿足 的x的集合為a;滿足 的x
    的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個元素的集合,求a的值.
    (二)函數(shù)的最值與值域
    例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
    解一: ,
    解二: 當(dāng) 即 時,
    例7 若 ,求 的最值。
    例8 已知x , y為正實數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
    例9 設(shè) 且 ,求 的最大值
    例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
    1.
    2. , 若 ,求a的取值范圍
    3.
    4.
    5.當(dāng)a在什么范圍內(nèi)方程: 有兩個不同的負(fù)根
    6.若方程 的兩根都對于2,求實數(shù)m的范圍
    7.求下列函數(shù)的最值:
    1
    2
    8.1 時求 的最小值, 的最小值
    2設(shè) ,求 的最大值
    3若 , 求 的最大值
    4若 且 ,求 的最小值
    9.若 ,求證: 的最小值為3
    10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
    高各取多少時,用料最省?(不計加工時的損耗及接縫用料)
    高二下數(shù)學(xué)教案版電子書篇七
    style="color:#125b86">
    教材分析
    因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
    學(xué)情分析
    通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
    教學(xué)目標(biāo)
    1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
    2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
    3、能運用提公因式法、公式法進行綜合運用。
    4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
    教學(xué)重點和難點
    重點: 靈活運用平方差公式進行分解因式。
    難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
    高二下數(shù)學(xué)教案版電子書篇八
    1.把握菱形的判定.
    2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
    3.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.
    4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
    觀察分析討論相結(jié)合的.方法
    1.教學(xué)重點:菱形的判定方法.
    2.教學(xué)難點:菱形判定方法的綜合應(yīng)用.
    1課時
    教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
    教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥
    復(fù)習(xí)提問
    1.敘述菱形的定義與性質(zhì).
    2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為xxxxxxxx.
    引入新課
    師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
    生答:定義法.
    此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法.
    講解新課
    菱形判定定理1:四邊都相等的四邊形是菱形.
    菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1
    分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
    分析判定2:
    師問:本定理有幾個條件?
    生答:兩個.
    師問:哪兩個?
    生答:(1)是平行四邊形(2)兩條對角線互相垂直.
    師問:再需要什么條件可證該平行四邊形是菱形?
    生答:再證兩鄰邊相等.
    (由學(xué)生口述證實)
    證實時讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
    師問:對角線互相垂直的四邊形是菱形嗎?為什么?
    可畫出圖,顯然對角線,但都不是菱形.
    菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):
    注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
    例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
    求證:四邊形是菱形(按教材講解).
    總結(jié)、擴展
    1.小結(jié):
    (1)歸納判定菱形的四種常用方法.
    (2)說明矩形、菱形之間的區(qū)別與聯(lián)系.
    2.思考題:已知:如圖4△中,,平分,,,交于.
    求證:四邊形為菱形.
    教材p159中9、10、11、13
    高二下數(shù)學(xué)教案版電子書篇九
    (一)教材的地位和作用
    本節(jié)是繼直線和圓的方程之后,用坐標(biāo)法研究曲線和方程的又一次實際演練。橢圓的學(xué)習(xí)可以為后面研究雙曲線、拋物線提供基本模式和理論基礎(chǔ)。因此這節(jié)課有承前啟后的作用,是本章和本節(jié)的重點內(nèi)容之一。
    (二)教學(xué)重點、難點
    1.教學(xué)重點:橢圓的定義及其標(biāo)準(zhǔn)方程
    2.教學(xué)難點:橢圓標(biāo)準(zhǔn)方程的推導(dǎo)
    (三)三維目標(biāo)
    1.知識與技能:掌握橢圓的定義和標(biāo)準(zhǔn)方程,明確焦點、焦距的概念,理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)。
    3.情感、態(tài)度、價值觀:通過主動探究、合作學(xué)習(xí),相互交流,對知識的歸納總結(jié),讓學(xué)生感受探索的樂趣與成功的喜悅,增強學(xué)生學(xué)習(xí)的信心。
    二、教學(xué)方法和手段
    采用啟發(fā)式教學(xué),在課堂教學(xué)中堅持以教師為主導(dǎo),學(xué)生為主體,思維訓(xùn)練為主線,能力培養(yǎng)為主攻的原則。
    “授人以魚,不如授人以漁。”要求學(xué)生動手實驗,自主探究,合作交流,抽象出橢圓定義,并用坐標(biāo)法探究橢圓的標(biāo)準(zhǔn)方程,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的“再創(chuàng)造”過程。
    三、教學(xué)程序
    1.創(chuàng)設(shè)情境,認(rèn)識橢圓:通過實驗探究,認(rèn)識橢圓,引出本節(jié)課的教學(xué)內(nèi)容,激發(fā)了學(xué)生的求知欲。
    2.畫橢圓:通過畫圖給學(xué)生一個動手操作,合作學(xué)習(xí)的機會,從而調(diào)動學(xué)生的學(xué)習(xí)興趣。
    3.教師演示:通過多媒體演示,再加上數(shù)據(jù)的變化,使學(xué)生更能理性地理解橢圓的形成過程。
    4.橢圓定義:注意定義中的三個條件,使學(xué)生更好地把握定義。
    5.推導(dǎo)方程:教師引導(dǎo)學(xué)生化簡,突破難點,得到焦點在x軸上的橢圓的標(biāo)準(zhǔn)方程,利用學(xué)生手中的圖形得到焦點在y軸上的橢圓的標(biāo)準(zhǔn)方程,并且對橢圓的標(biāo)準(zhǔn)方程進行了再認(rèn)識。
    6.例題講解:通過例題規(guī)范學(xué)生的解題過程。
    7.鞏固練習(xí):以多種題型鞏固本節(jié)課的教學(xué)內(nèi)容。
    8.歸納小結(jié):通過小結(jié),使學(xué)生對所學(xué)的知識有一個完整的體系,突出重點,抓住關(guān)鍵,培養(yǎng)學(xué)生的概括能力。
    9.課后作業(yè):面對不同層次的學(xué)生,設(shè)計了必做題與選做題。
    10.板書設(shè)計:目的是為了勾勒出全教材的主線,呈現(xiàn)完整的知識結(jié)構(gòu)體系并突出重點,用彩色增加信息的強度,便于掌握。
    四、教學(xué)評價
    本節(jié)課貫徹了新課程理念,以學(xué)生為本,從學(xué)生的思維訓(xùn)練出發(fā),通過學(xué)習(xí)橢圓的定義及其標(biāo)準(zhǔn)方程,激活了學(xué)生原有的認(rèn)知規(guī)律,并為知識結(jié)構(gòu)優(yōu)化奠定了基礎(chǔ)。
    高二下數(shù)學(xué)教案版電子書篇十
    本節(jié)內(nèi)容為人教版高一數(shù)學(xué)必修3模塊第一章算法初步第1.1.2節(jié)第一課時,
    主要包括程序框圖的圖形符號、算法的程序框圖表示、算法的的邏輯結(jié)構(gòu)等三部分內(nèi)容。
    算法就是解決問題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算機科學(xué)的基礎(chǔ),利用計算機解決問需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計算機的算法,計算機可以解決多類信息處理問題,直接寫出解決該問題的程序是困難的,因此,我們要首先研究解決問題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計是使用計算機解決具體問題的一個極為重要的環(huán)節(jié)。
    通過對解決具體問題的過程與步驟的分析,體會算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。進一步體會算法的另一種表達方式。
    本章節(jié)的重點是體會算法的思想,通過模仿、操作、探索,通過設(shè)計程序框圖解決實際生活問題的過程。通過解決具體問題,理解三種基本邏輯結(jié)構(gòu)中順序和條件結(jié)構(gòu),經(jīng)歷將具體問題用程序框圖來表示,在實際問題中能設(shè)計相關(guān)程序框圖解決實際問題。
    關(guān)于本節(jié)內(nèi)容,相對學(xué)生來說,全是新知識,因它涉及到計算機科學(xué)相關(guān)內(nèi)容,也是數(shù)學(xué)及其應(yīng)用的重要組成部分。大部分學(xué)生并沒有學(xué)習(xí)過程序框圖的設(shè)計,在編寫程序方面基本上都是“零起點”,而且認(rèn)為程序框圖設(shè)計是一件困難的事情,因此本課的舉例和任務(wù)都適當(dāng)降低難度,讓學(xué)生能在實踐中體會成功的喜悅,領(lǐng)略程序設(shè)計之算法程序框圖表示的樂趣。另一方面要充分利用課外資料和實例,設(shè)置問題情景,激發(fā)學(xué)生的學(xué)習(xí)興趣,通過建構(gòu)模型,化抽象為具體,教師在整個學(xué)習(xí)過程中進行指導(dǎo)、啟發(fā)、補充與完善。
    (一)知識與技能
    2、理解并掌握算法的三種基本邏輯結(jié)構(gòu),培養(yǎng)學(xué)生分析問題、解決問題的能力;
    3、培養(yǎng)學(xué)生在實際現(xiàn)實生活中,能正確運用相關(guān)邏輯結(jié)構(gòu)分析、解決實際問題;
    (二)過程與方法
    2、在具體問題的解決過程中理解程序流程圖的三種基本邏輯結(jié)構(gòu)之順序結(jié)構(gòu)、條件結(jié)構(gòu),尋找解決實際問題的規(guī)律與方法。
    (三)情感態(tài)度與價值觀
    1:通過本節(jié)的學(xué)習(xí),使學(xué)生對計算機的算法語言有一個基本的了解,明確算法的要求,認(rèn)識計算機是人類征服自然的一種有力工具,進一步提高探索、認(rèn)識世界的能力。
    2:培養(yǎng)學(xué)生迎難而上,戰(zhàn)勝困難的大無畏精神,克服畏難情緒,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣、塑造認(rèn)真、細(xì)致的做事態(tài)度。
    教學(xué)重點:程序框圖的圖形符號、算法的基本邏輯結(jié)構(gòu)及應(yīng)用
    教學(xué)難點:算法的條件結(jié)構(gòu)在實際生活中的運用
    3、競爭機制策略:據(jù)本章節(jié)中部分內(nèi)容,合理設(shè)置分組競爭,小組賽形式激發(fā)學(xué)生高漲的.學(xué)習(xí)熱情,不僅引導(dǎo)學(xué)生將所學(xué)知識應(yīng)用于解決實際問題,且培養(yǎng)學(xué)生團隊合作探究精神。
    任務(wù)驅(qū)動法、啟發(fā)引導(dǎo)式、小組合作探究學(xué)習(xí)法、模仿建構(gòu)學(xué)習(xí)法
    多媒體課件、生活中具體實例、同步學(xué)案
    課時1
    教學(xué)程序教師組織與引導(dǎo)學(xué)生活動設(shè)計意圖
    發(fā)放“任務(wù)”紙質(zhì)
    1、把任務(wù)學(xué)案發(fā)給學(xué)生
    2、查閱、收集有關(guān)實際生活中實例,用于本節(jié)教學(xué)
    1、預(yù)習(xí)
    2、查閱相關(guān)資料學(xué)生是學(xué)習(xí)主體,自主合作、探究式學(xué)習(xí)
    回顧舊知,引入新課
    改進:生活中的問題,描述解決步驟(1)算法的描述:要交換兩杯不同液體的方法、步驟;(自然語言描述法,復(fù)習(xí))
    穿插經(jīng)典算法在教學(xué)中,激趣導(dǎo)學(xué)
    1:雞兔同籠、2:誰在說謊
    (2)你還知道有什么渠道能使算法描述得更直觀、高效、準(zhǔn)確嗎?引導(dǎo)學(xué)生看書自學(xué)
    學(xué)生思考、回答,
    學(xué)生看書自學(xué)本節(jié)程序框圖相關(guān)知識:程序框圖圖形符號
    激發(fā)學(xué)生對本節(jié)課內(nèi)容的關(guān)注
    探究不同程序框圖符號表示的不同含義,初步探討程序框圖的畫法
    重點部分強記據(jù)教材設(shè)疑,并逐一提出下列問題:
    (1)程序框圖共有哪些圖形符號?
    改進:同學(xué)們,你們所常見的圖形有哪些??學(xué)生回答
    現(xiàn)在,從這些常用圖形中,我們選出幾中種來用于表示“算法”中的含義
    (2)不同符號所表示的什么含義?
    (3)具體應(yīng)用,實例列舉,老師在黑板上“補”畫“長方形面積”流程圖
    (4)要求學(xué)生結(jié)合上述老師所講實例,模仿“補充”畫出,改進:
    a:圓的面積、周長的流程圖(老師完成)
    b:正方形面積、周長的流程圖(師生共同完成)
    c:三角形面積、周長的流程圖(學(xué)生自己完成)
    d:求學(xué)生語、數(shù)、英三科成績平均分的程序框圖(學(xué)生自己完成)
    (5)例3.已知三角形三邊長,求三角形面積的程序框圖(老師提示公式,學(xué)生自己理解)
    (6)判別整數(shù)n是否為質(zhì)數(shù)后面學(xué)
    老師引導(dǎo)學(xué)生說出程序框圖特征并作簡要歸納學(xué)生看書掌握
    學(xué)生聯(lián)系實際,回答
    看書自學(xué),回答
    看書自學(xué),回答
    聽講,學(xué)習(xí)
    學(xué)生根據(jù)圖形特點,找記憶方法
    討論、交流、模仿、經(jīng)歷
    學(xué)生思考、討論并畫圖
    反復(fù)練習(xí),鞏固、加強記憶
    學(xué)生自己設(shè)計
    對照課本,檢查正誤
    學(xué)生總結(jié)歸納程序框圖特點
    學(xué)生仿做
    學(xué)生仿做
    學(xué)生理解
    或
    s=p*r^2培養(yǎng)自學(xué)能力
    明確每種圖形符號的不同含義及不同應(yīng)用
    培養(yǎng)學(xué)生模仿學(xué)習(xí)與制作流程圖的能力
    培養(yǎng)學(xué)生善于總結(jié)歸納的習(xí)慣
    重點突破
    框圖符號
    重、難點攻克條件結(jié)構(gòu)
    總結(jié)過渡并提出問題:
    改進:聯(lián)系實際生活,結(jié)合課本,自主探究:算法的邏輯結(jié)構(gòu)應(yīng)有幾種
    (1)如何用框圖符號來表示算法?
    (2)算法有幾種基本邏輯結(jié)構(gòu)?
    (3)你會用框圖符號表示算法的順序結(jié)構(gòu)了嗎?(前面剛講,總結(jié)歸納)
    (4)你會用框圖符號表示條件結(jié)構(gòu)嗎?
    老師列舉并畫實例流程圖:
    引導(dǎo)學(xué)生帶著問題邊看書邊在練習(xí)本將幾種結(jié)構(gòu)畫出來,加強看書效果
    例4:老師啟發(fā)學(xué)生,師生共同完成三數(shù)為邊是否組成三角形程序框圖
    補充:1:求絕對值的程序框圖:
    2:y=
    引導(dǎo)學(xué)生思考設(shè)計分段函數(shù)的流程圖,運用條件結(jié)構(gòu)
    教師引導(dǎo)學(xué)生列舉生活中實例
    學(xué)生看書
    同桌間自主探究、理解掌握
    討論回答問題
    學(xué)生思考、模仿、探究著畫流程圖,和課本對照判正誤
    學(xué)生模仿、思考、討論與交流
    設(shè)計相應(yīng)流程圖
    同學(xué)上臺展示自己的流程圖,其它學(xué)同指正其正誤
    學(xué)生對比條件與順序結(jié)構(gòu)的框圖,總結(jié)歸納條件結(jié)構(gòu)的框圖的繪制任務(wù)驅(qū)動,
    創(chuàng)設(shè)學(xué)習(xí)情景
    層層深入
    引領(lǐng)學(xué)生縱向?qū)W習(xí)
    模仿,思考,對照,學(xué)生有所思有所悟,
    體驗學(xué)習(xí)成功的快樂
    突出學(xué)生學(xué)習(xí)的主體
    培養(yǎng)學(xué)生的邏輯思維能力
    教師對學(xué)生的講解進行補充和完善,小結(jié)本節(jié)內(nèi)容。學(xué)生交流生活中實例及框圖解決辦法。
    課堂小結(jié)引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識要點
    并談?wù)劚竟?jié)課的收獲與提高及改進學(xué)生回顧總結(jié)本節(jié)所學(xué)梳理本節(jié)課的知識主干
    布置課后作業(yè)作業(yè):p20習(xí)題1.1
    a組1,3課后完成鞏固、反饋學(xué)習(xí)效果
    參閱經(jīng)典算法:穿插在教學(xué)中,激趣導(dǎo)學(xué)
    2:誰在說謊
    *運行結(jié)果
    zhangsantoldalie(張三說假話)
    lisitoldatruch.(李四說真話)
    wangwutoldalie.(王五說假話)
    九、板書設(shè)計
    1.1.2程序框圖及算法的基本邏輯結(jié)構(gòu)
    一、程序框圖
    1:程序框圖又名_______
    二:算法的基本邏輯結(jié)構(gòu)
    2:請你表示出條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的框圖形式:
    3:請仿照寫出求長方形的面積的框圖,類似正方形面積框圖、圓面積、三角形面積等程序框圖(順序結(jié)構(gòu))
    4:設(shè)計給定三角形任意三邊長a,b,c,試表示出三角形面積相應(yīng)程序框圖
    (對照p9例3,檢查正誤)
    三:算法的條件框圖
    1:試畫條件結(jié)構(gòu)框圖的2種形式
    2:例4會了嗎?試試看
    3:試設(shè)計求絕對值的程序框圖
    小結(jié)作業(yè):p20,習(xí)題:1.1a組1,3兩題
    改進效果:經(jīng)過斟酌改進實踐后的算法,方式更適宜中學(xué)生個性特點,更易被中學(xué)生接受,效果更好。
    高二下數(shù)學(xué)教案版電子書篇十一
    1、地位、作用和特點:
    《xx》是高中數(shù)學(xué)課本第xx冊(x修)的第xx章“xx”的第xx節(jié)內(nèi)容。
    本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對的知識進一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I?、生產(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xx。
    教學(xué)目標(biāo):
    根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):
    (1)知識目標(biāo):a、b、c
    (2)能力目標(biāo):a、b、c
    (3)德育目標(biāo):a、b
    教學(xué)的重點和難點:
    (1)教學(xué)重點:
    (2)教學(xué)難點:
    基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)xx真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序:
    導(dǎo)入新課新課教學(xué)反饋發(fā)展
    學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的'能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進行的,是通過優(yōu)化教學(xué)程序來增強學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。
    1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
    本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。
    2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授時,可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
    3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點,及時總結(jié)和推廣。
    4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
    (一)、課題引入:
    教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。c、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究xx,引導(dǎo)學(xué)生提出接下去要研究的問題。
    (二)、新課教學(xué):
    1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進行交流、討論得出新知,并進一步提出下面的問題。
    2、組織學(xué)生進行新問題的實驗方法設(shè)計—這時在設(shè)計上是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
    (三)、實施反饋:
    1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。
    2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
    在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。
    以上是我對《xx》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識,并把它運用到對的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。
    總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
    高二下數(shù)學(xué)教案版電子書篇十二
    1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點的位置的方法。
    2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
    體會直角坐標(biāo)系的作用。
    能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
    新授課
    啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
    多媒體、實物投影儀
    一、復(fù)習(xí)引入:
    情境1:為了確保宇宙飛船在預(yù)定的軌道上運行,并在按計劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的.位置機器運動的軌跡。
    情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
    問題1:如何刻畫一個幾何圖形的位置?
    問題2:如何創(chuàng)建坐標(biāo)系?
    二、學(xué)生活動
    學(xué)生回顧
    刻畫一個幾何圖形的位置,需要設(shè)定一個參照系
    1、數(shù)軸它使直線上任一點p都可以由惟一的實數(shù)x確定
    2、平面直角坐標(biāo)系
    在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點p都可以由惟一的實數(shù)對(x,y)確定。
    3、空間直角坐標(biāo)系
    在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點p都可以由惟一的實數(shù)對(x,y,z)確定。
    三、講解新課:
    1、建立坐標(biāo)系是為了確定點的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
    任意一點都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點的坐標(biāo)就能確定這個點的位置
    2、確定點的位置就是求出這個點在設(shè)定的坐標(biāo)系中的坐標(biāo)
    四、數(shù)學(xué)運用
    例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點。
    變式訓(xùn)練
    思考
    通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復(fù)合變換?
    五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
    1.平面直角坐標(biāo)系的意義。
    2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
    六、課后作業(yè):
    高二下數(shù)學(xué)教案版電子書篇十三
    1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點的位置的方法。
    2.掌握坐標(biāo)法解決幾何問題的步驟;體會坐標(biāo)系的作用。
    體會直角坐標(biāo)系的作用。
    能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
    新授課
    啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
    多媒體、實物投影儀
    一、復(fù)習(xí)引入:
    情境1:為了確保宇宙飛船在預(yù)定的軌道上運行,并在按計劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
    情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點不同的畫布所在的位置。
    問題1:如何刻畫一個幾何圖形的位置?
    問題2:如何創(chuàng)建坐標(biāo)系?
    二、學(xué)生活動
    學(xué)生回顧
    刻畫一個幾何圖形的位置,需要設(shè)定一個參照系
    1、數(shù)軸它使直線上任一點p都可以由惟一的實數(shù)x確定
    2、平面直角坐標(biāo)系
    在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點p都可以由惟一的實數(shù)對(x,y)確定。
    3、空間直角坐標(biāo)系
    在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點p都可以由惟一的實數(shù)對(x,y,z)確定。
    三、講解新課:
    1、建立坐標(biāo)系是為了確定點的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
    任意一點都有確定的坐標(biāo)與其對應(yīng);反之,依據(jù)一個點的'坐標(biāo)就能確定這個點的位置
    2、確定點的位置就是求出這個點在設(shè)定的坐標(biāo)系中的坐標(biāo)
    四、數(shù)學(xué)運用
    例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長為1的正六邊形的頂點。
    變式訓(xùn)練
    變式訓(xùn)練
    2、在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點并過點p的橢圓方程
    例3已知q(a,b),分別按下列條件求出p的坐標(biāo)
    (1)p是點q關(guān)于點m(m,n)的對稱點
    (2)p是點q關(guān)于直線l:x-y+4=0的對稱點(q不在直線1上)
    變式訓(xùn)練
    用兩種以上的方法證明:三角形的三條高線交于一點。
    思考
    通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復(fù)合變換?
    五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
    1.平面直角坐標(biāo)系的意義。
    2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
    高二下數(shù)學(xué)教案版電子書篇十四
    1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
    2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
    3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    【教學(xué)重難點】
    教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
    教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
    【教學(xué)過程】
    1.情景導(dǎo)入
    教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
    2.展示目標(biāo)、檢查預(yù)習(xí)
    3、合作探究、交流展示
    (2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
    在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
    (1)有兩個面互相平行;
    (2)其余各面都是平行四邊形;
    (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    (3)提出問題:請列舉身邊的棱柱并對它們進行分類
    (4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的`概念,分類以及表示。
    (5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
    (6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    (7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
    4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
    (1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
    (2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
    (4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
    (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
    高二下數(shù)學(xué)教案版電子書篇十五
    教學(xué)目標(biāo):
    1、進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
    2、在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
    3、進一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
    教學(xué)重點:
    問題的提出與解決
    教學(xué)難點:
    如何進行問題的探究
    教學(xué)方法:
    啟發(fā)探究式
    教學(xué)過程:
    研究方向提示:
    1、數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
    2、研究所給數(shù)列的項之間的關(guān)系;
    3、研究所給數(shù)列的子數(shù)列;
    4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
    5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
    6、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實際意義等)。
    針對學(xué)生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
    課堂小結(jié):
    1、研究一個數(shù)列可以從哪些方面提出問題并進行研究?
    2、你最喜歡哪位同學(xué)的研究?為什么?
    高二下數(shù)學(xué)教案版電子書篇十六
    (1)認(rèn)知目標(biāo)
    理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。
    (2)技能目標(biāo)
    經(jīng)歷從分?jǐn)?shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。
    (3)情感態(tài)度與價值觀
    教學(xué)中讓學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗。
    重點:運用分式的乘除法法則進行運算。
    難點:分子、分母為多項式的分式乘除運算。
    (一)提出問題,引入課題
    俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:
    問題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
    問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
    從實際出發(fā),引出分式的乘除的實在存在意義,讓學(xué)生感知學(xué)習(xí)分式的'乘法和除法的實際需要,從而激發(fā)學(xué)生興趣和求知欲。
    (二)類比聯(lián)想,探究新知
    從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。
    解后總結(jié)概括:
    (1)式是什么運算?依據(jù)是什么?
    (2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。
    (分式的乘除法法則)
    乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
    除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
    (三)例題分析,應(yīng)用新知
    師生活動:教師參與并指導(dǎo),學(xué)生獨立思考,并嘗試完成例題。
    p11的例1,在例題分析過程中,為了突出重點,應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。p11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。
    (四)練習(xí)鞏固,培養(yǎng)能力
    p13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。
    師生活動:教師出示問題,學(xué)生獨立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過程。
    通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
    (五)課堂小結(jié),回扣目標(biāo)
    引導(dǎo)學(xué)生自主進行課堂小結(jié):
    1、本節(jié)課我們學(xué)習(xí)了哪些知識?
    2、在知識應(yīng)用過程中需要注意什么?
    3、你有什么收獲呢?
    師生活動:學(xué)生反思,提出疑問,集體交流。
    (六)布置作業(yè)
    教科書習(xí)題6.2第1、2(必做)練習(xí)冊p(選做),我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。
    高二下數(shù)學(xué)教案版電子書篇十七
    【自主梳理】
    1.函數(shù)單調(diào)性的定義:
    (1)一般地,設(shè)函數(shù)的定義域為a,區(qū)間.
    如果對于區(qū)間i內(nèi)的任意兩個值,當(dāng)時,都有_______________,那么就說在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
    如果對于區(qū)間i內(nèi)的任意兩個值,當(dāng)時,都有_______________,那么就說在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
    (2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
    2.復(fù)合函數(shù)的單調(diào)性:
    對于函數(shù)如果當(dāng)在區(qū)間上和在區(qū)間上同時具有單調(diào)性,則復(fù)合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
    3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
    (1)______________;(2)____________________;(3)__________________.
    【自我檢測】
    1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
    2.函數(shù)在上是_____函數(shù)(填增或減).
    3.函數(shù)的單調(diào)區(qū)間是_____________________.
    4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實數(shù)a的取值范圍是________________________.
    5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
    6.函數(shù)的單調(diào)減區(qū)間是___________________.
    【例1】填空題:
    (1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
    (2)函數(shù)的單調(diào)減區(qū)間是________________.
    (3)若上是增函數(shù),則a的取值范圍是_____________.
    (4)若是r上的減函數(shù),則a的取值范圍是_________.
    【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
    【例3】已知函數(shù)對任意的,都有,且當(dāng)時,.
    (1)求證:是r上的增函數(shù);
    (2)若,解不等式.
    1.函數(shù)單調(diào)減區(qū)間是_________________.
    2.若函數(shù)在區(qū)間上具有單調(diào)性,則實數(shù)a的取值范圍是______.
    3.已知函數(shù)是定義在上的'增函數(shù),且,則實數(shù)x的取值范圍是_________________________.
    4.已知在內(nèi)是減函數(shù),,且,設(shè),,則a,b的大小關(guān)系是_________________.
    5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))
    6.函數(shù)的遞減區(qū)間是________________.
    7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
    8.已知函數(shù)滿足對任意的,都有成立,則a的取值范圍是_________.
    9.確定函數(shù)的單調(diào)性.
    10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
    錯題卡題號錯題原因分析
    高二數(shù)學(xué)教案:數(shù)的單調(diào)性教案(答案)
    一、課前準(zhǔn)備:
    【自主梳理】
    1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
    (2)單調(diào),單調(diào)區(qū)間
    2.單調(diào)性,同則增異則減
    3.(1)定義法(2)圖象法(3)導(dǎo)函數(shù)法
    【自我檢測】
    1.2.增3.和4.
    5.6.
    二、課堂活動:
    【例1】
    (1)(2)(3)(4)
    【例2】證明:設(shè)
    【例3】(1)證明:
    (2)解:
    三、課后作業(yè)
    1.2.3.4.
    5.減函數(shù)6.7.8.
    9.解:定義域為,任取,且
    10.解: