通過寫心得體會,可以讓我們更好地認識自己,提高自我認知能力。寫心得體會時,要有激發(fā)讀者興趣和引起共鳴的技巧,讓讀者產生共情的效果。以下是小編為大家收集的心得體會范文,希望能給大家提供一些思路和參考。
商務大數據的心得體會篇一
近年來,隨著電子商務的蓬勃發(fā)展,電子商務大數據的重要性也日益凸顯。在電子商務領域,大數據已經成為企業(yè)競爭力的關鍵所在,對于企業(yè)發(fā)展來說,掌握和運用好大數據已經成為企業(yè)必不可少的一部分。
二、大數據在電子商務中的應用
1. 數據分析
在電子商務中,大數據的主要應用就是數據分析。通過對用戶行為數據、交易數據、瀏覽數據等的分析,可以更好地了解消費者的需求,掌握市場趨勢,優(yōu)化商品的推廣策略,提高銷售效率。例如,淘寶通過數據分析,可以根據不同用戶的購買記錄和瀏覽記錄,提供個性化的推薦商品,提高用戶的購買率。
2. 營銷活動
電子商務企業(yè)可以通過大數據,更好的規(guī)劃營銷活動,提高宣傳和廣告效果。例如,京東在“618”大促期間,通過大數據分析用戶購買記錄,進行精準營銷,推送更符合用戶需求的商品,提高銷售額和客戶滿意度。
3. 倉儲物流
電子商務企業(yè)可以通過大數據技術,優(yōu)化倉儲物流流程,提高倉儲物流效率,降低物流成本。例如,騰訊物流通過大數據技術實現(xiàn)了自動化倉儲管理,減少了人工干預的時間和成本,提高倉庫的處理能力,縮短了訂單處理時間。
三、大數據在電商企業(yè)管理中的作用
1. 決策支持
大數據能夠為企業(yè)的決策提供支持,可以根據大數據的分析,制定合適的戰(zhàn)略和計劃。例如,一個電子商務企業(yè)可以通過數據分析,確定新產品的上線時間和市場定位。
2. 客戶服務和維護
大數據可以幫助企業(yè)提高客戶服務的質量和效率。企業(yè)可以通過對客戶行為數據的分析,提供個性化的客戶服務,滿足客戶的需求和要求。
3. 風險控制
大數據技術可以幫助企業(yè)識別和降低風險??梢酝ㄟ^對互聯(lián)網數據的監(jiān)控,發(fā)現(xiàn)市場競爭對手的動態(tài),以及企業(yè)自身風險的發(fā)展趨勢,從而采取相應的措施,保護企業(yè)的利益。
四、大數據與電商安全的關系
1. 數據保護
在大數據應用中,數據保護是至關重要的。企業(yè)必須保障用戶數據的隱私和安全,防止數據泄露和盜用。
2. 網絡安全
電子商務平臺的網絡安全是大數據應用過程中必須面對的問題,必須保障在線交易的安全和穩(wěn)定性。
五、結論
大數據技術已經成為電子商務企業(yè)的重要組成部分,在電子商務領域中的應用,可以提高企業(yè)效率、服務和營銷質量,降低成本和風險,實現(xiàn)可持續(xù)發(fā)展。電子商務企業(yè)應該積極引入大數據技術,合理運用,走在行業(yè)的前沿。同時,企業(yè)應該重視數據保護和網絡安全,建設強大的數據安全體系,保障企業(yè)信息的安全和穩(wěn)定。
商務大數據的心得體會篇二
隨著互聯(lián)網技術的迅速發(fā)展和商務活動的日益頻繁,商務數據的規(guī)模也與日俱增。在這個數據爆炸的時代,如何利用商務大數據分析有效地開展業(yè)務活動成為了許多企業(yè)急需解決的問題。在我的工作中,我深刻體會到了商務大數據分析的重要性,并積累了一些心得體會。在下文中,我將分別從數據采集、數據清洗、數據分析、數據可視化和數據應用五個方面進行闡述。
首先,數據采集是商務大數據分析的基礎。企業(yè)需要從各個渠道收集大量的商業(yè)數據,并將其進行整合。然而,在實際操作中,我發(fā)現(xiàn)數據的采集并不像想象中那么簡單。不同渠道的數據格式和接口各異,需要耗費大量的時間和精力進行整合。因此,建立一個高效的數據采集系統(tǒng)是至關重要的,可以減少重復工作和錯誤,提高數據的準確性和完整性。
其次,數據清洗是商務大數據分析的關鍵。經過數據采集后,我們會發(fā)現(xiàn)數據中可能存在一些異?;蝈e誤的情況,例如缺失值、重復值或不一致的格式。這就需要我們進行數據清洗工作,以確保數據的質量和可用性。在我的工作經驗中,我發(fā)現(xiàn)數據清洗工作是非常繁瑣和耗時的,需要我們仔細檢查每一個數據項,并進行相應的處理。因此,我們可以借助一些自動化工具和技術,提高數據清洗的效率和準確性。
第三,數據分析是商務大數據分析的核心。通過對采集和清洗后的數據進行分析,我們可以發(fā)現(xiàn)數據中的模式、趨勢和關聯(lián),從而提供有價值的商業(yè)洞察。在我的工作中,我主要使用統(tǒng)計分析和機器學習算法來進行數據分析。統(tǒng)計分析可以幫助我們找到數據中的規(guī)律和趨勢,而機器學習算法則可以幫助我們發(fā)現(xiàn)數據中的復雜模式和關聯(lián)。通過結合這兩種方法,我們可以得到更全面和準確的數據分析結果。
第四,數據可視化是商務大數據分析的重要手段。通過將數據轉化為圖表、圖像和動畫等可視化形式,我們可以更直觀地展示數據的分析結果,提高數據的理解和溝通效果。在我的工作中,我經常使用各種可視化工具和技術,如表格、柱狀圖、折線圖、餅圖和熱力圖等。通過合理選擇和運用這些工具和技術,我們可以將復雜的數據分析結果轉化為簡潔明了的圖表和圖像,方便用戶進行查看和分析。
最后,數據應用是商務大數據分析的終極目標。通過數據分析和可視化,我們可以為企業(yè)提供有價值的商業(yè)洞察,并為決策者提供關鍵的參考信息。在我的工作中,我經常將數據分析結果呈現(xiàn)給我的上級和同事,并與他們進行討論和決策。通過這種方式,我們可以及時地發(fā)現(xiàn)問題、分析原因和制定解決方案,從而促進企業(yè)的發(fā)展和壯大。
綜上所述,商務大數據分析是一項復雜而又重要的工作。在實際操作中,我們需要關注數據采集、數據清洗、數據分析、數據可視化和數據應用等各個環(huán)節(jié),并不斷優(yōu)化和改進我們的工作方法和技術手段。只有這樣,我們才能更好地利用商務大數據分析開展業(yè)務活動,為企業(yè)帶來更大的價值。
商務大數據的心得體會篇三
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統(tǒng)上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰(zhàn)栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y(tǒng)計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統(tǒng)計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統(tǒng),跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發(fā)展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統(tǒng)的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統(tǒng)計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節(jié)甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統(tǒng)計學了。但是由統(tǒng)計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規(guī)則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規(guī)定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區(qū)別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現(xiàn)科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現(xiàn)在就趁早跳樓。
還好我知道自己對什么統(tǒng)計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現(xiàn)了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續(xù)寫下去,至少加一個第四部分——大數據時代的邏輯思維。
大數據的心得體會篇4
商務大數據的心得體會篇四
電子商務大數據是當前互聯(lián)網領域內的熱門話題。電子商務的發(fā)展,讓我們在日常生活中越來越離不開互聯(lián)網,而大數據又是電子商務的根基和推動力。然而,在大數據時代,我們如何更好地應對電子商務大數據呢?本文將從數據處理、數據分析和數據應用三個方面,分享我在電子商務大數據領域的心得體會。
第二段:數據處理
在電子商務領域,數據處理是一個重要的環(huán)節(jié)。由于電子商務領域涉及到各種各樣的數據類型,數據量也非常龐大,因此在數據處理環(huán)節(jié)需要選擇合適的工具和技術,以提高數據處理效率。例如,Hadoop和Spark等開源大數據處理框架可以幫助我們高效地存儲和處理海量數據。此外,數據清洗和標準化也非常重要,它們可以消除噪聲和重復數據,提高數據質量和準確性,從而更好地為數據分析和應用提供基礎。
第三段:數據分析
數據分析是電子商務大數據的核心環(huán)節(jié)。在數據分析環(huán)節(jié)中,數據被轉化為有用的信息,以幫助企業(yè)更好地了解消費者和市場動態(tài)。數據分析可以幫助我們深入了解消費者行為和偏好,指引市場營銷策略和產品開發(fā)方向。例如,通過行為分析和用戶畫像,可以了解用戶喜好和購買意向,以更好地開展精準營銷。此外,數據分析還可以幫助企業(yè)預測市場變化、識別潛在風險和機遇,為企業(yè)戰(zhàn)略決策提供依據。
第四段:數據應用
數據應用是電子商務大數據的重要環(huán)節(jié)。數據分析結果只有在實際場景中得到應用,才能產生實際效果。在數據應用環(huán)節(jié)中,可以通過制定營銷策略、產品策略等方式,將數據分析的結果落地。此外,數據應用還可以幫助企業(yè)優(yōu)化運營流程、提高效率和降低成本,提升企業(yè)競爭力。例如,在供應鏈管理中,通過數據分析和應用,可以實現(xiàn)資源優(yōu)化、成本控制和時間管理。
第五段:總結
在電子商務大數據時代,合理處理、高效分析和精準應用是企業(yè)成功的關鍵。數據處理、數據分析和數據應用是一個緊密相連的整體,只有它們的協(xié)同作用,才能取得最好的效果。同時,在電子商務大數據的時代,我們需要不斷學習和應用新技術和新工具,不斷創(chuàng)新和改進數據處理、分析和應用的方法和手段。這樣,才能在電子商務領域立足,獲取更大價值。
商務大數據的心得體會篇五
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20__年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
大數據的心得體會篇2
商務大數據的心得體會篇六
在當今商業(yè)世界中,數據已成為企業(yè)成功的關鍵。商務數據可用于支持企業(yè)決策、提高生產效率和促進業(yè)務增長。然而,對于許多企業(yè)來說,并不容易從大量的數據中提取有用的信息。因此,在這篇文章中,我將分享一些我在商務數據方面的心得體會。
第二段:數據收集
在開始分析數據之前,首先需要收集數據。業(yè)務數據可以來源于許多渠道,如企業(yè)內部系統(tǒng)、社交媒體、市場調查和消費者反饋等。收集數據的質量和完整性非常重要,因為不完整或不準確的數據可能會導致錯誤的決策。因此,在收集數據時,我們要確保數據來源的可靠性和準確性,以便我們能夠從中得出有意義的結論。
第三段:數據分析
收集數據后,我們需要使用數據分析工具來理解和識別模式。有幾種常見的分析技術,包括聚類分析、回歸分析和預測建模等。聚類分析可以讓我們將相似的數據分組到一起,回歸分析可以幫助我們確定因素之間的關系,而預測建??梢詭椭覀冾A測未來的趨勢。無論使用哪種技術,都要確保分析結論是可信的,并且需要一定程度的技術知識才能正確地分析數據。
第四段:數據可視化
分析數據后,下一步是通過可視化工具來呈現(xiàn)數據。數據可視化可以幫助我們更好地理解和解釋數據,從而更好地與團隊分享數據??梢允褂酶鞣N圖表和圖形,如條形圖、折線圖、散點圖和熱力圖等。但重要的是,圖表和圖形必須易于理解和使用,并且應該與數據本身一致。如果數據工具集成了可視化工具,那么這些工具將會更為強大。
第五段:數據應用
收集、分析和呈現(xiàn)數據僅僅是第一步。最后,我們需要理解并應用數據來解決實際問題。其中一種應用方式是在決策制定過程中使用數據。通過對數據的分析和呈現(xiàn),可以幫助企業(yè)了解市場和消費者的需求,制定更好的戰(zhàn)略和決策。此外,通過數據,還可以優(yōu)化業(yè)務流程和提高生產效率。
結論:
我們現(xiàn)在生活在一個基于數據和分析的時代。商務數據的價值越來越高,但如何理解并應用數據仍然是一個挑戰(zhàn)。通過對數據收集、分析、可視化和應用的理解,我們可以更好地利用商務數據來支持我們企業(yè)的成功和繁榮。
商務大數據的心得體會篇七
“大數據”概念早在1980年就有國外的學者提出,可是最近幾年才廣泛受到大家的關注。當“大數據”這個概念傳到中國的時候,瞬間引起了轟動。隨即,各種有關“大數據”的資料和書籍充斥的我們的視野。隨意打開某個電子商務平臺圖書類頁面,在搜索框中搜索“大數據”三個字,就會出現(xiàn)好多本有關“大數據”的書籍??墒?,有一個很有趣的現(xiàn)象就是:幾乎所有的平臺上,出現(xiàn)的第一本關于“大數據”的書籍一定是《大數據時代》。一點進去,這本書推薦欄里的第一句話就是:迄今為止全世界最好的一本大數據專著。同時,為這本書做推薦的都是各行業(yè)的精英領袖。所有“大數據”方面的書籍也是這本書銷量最高,評價最好。
我從來不會因為哪本書暢銷和很多人推薦就盲目跟風的去看一本書。因為我知道通常在這種情況下選擇一本書,整個閱讀的體會和感受是無法遵從自己的內心的,整個過程都很容易夾雜著別人對這本書的感受。所以通常我讀書的節(jié)奏大多都是跟不上“潮流”的,但往往經過風雨洗禮之后沉淀下來的都是精華。坦白講,閱讀這本書的初衷并不是因為我想從書中獲取到多少大數據方面的精華,只是很想知道對于這么一個很直白的名詞,作者是怎么寫出這么厚的一本書的。這種初衷或許很無知和幼稚,可就是這種“愚蠢”的好奇心,讓我更透徹的看到書中的精華。
在看《大數據時代》這本書之前,我的所有讀后感都是集中在書籍給了我什么思考。對于這本書的讀后感,除了觀點碰撞之外,我還會加上大部分個人看這本書的體會。因為這本書,已經完全讓我模糊了大多數人口中的“全世界最好的書”是一種什么標準。也許《大數據時代》真的無法承載那么高的贊美!
大數據時代的入門書
看完這本書,我隨意調查了一些閱讀過這本書并且給這本書絕對好評的朋友。詢問他們這本書好在哪里?大多數的回答是說《大數據時代》這本書讓對大數據一無所知的他們了解了大數據這個概念,同時通過很多案例說明原來大數據能有這么大的用處,影響會有這么大!僅此而已。我看完這本書最大的感受是這本書分為上、下兩部分。前120多頁為上部分,后120多頁為下部分。之所以說《大數據時代》是一本關于大數據的入門書,是因為這本書用了前面120多頁的篇幅反復的強調大數據的出現(xiàn)對社會發(fā)展影響很大,并且要人們轉變小數據時代慣有的思想。所以整本書的前半部分就強調大數據時代的三個轉變:1、大數據利用所有的數據,而不再僅僅依靠一小部分數據,不再依賴于隨機采樣。2、大數據數據多,不再熱衷于追求精確性,也不再期待精確性。3、大數據時代不再熱衷于尋找因果關系,而是追求相關關系。所以整個上半部分沒什么可詳說的。我們重點聊聊本書的后半部分。
既然一直都在強調大數據對我們的意義,總要有具體體現(xiàn)。整本書中,我感觸最大的一個案例就是某公司通過分析大數據發(fā)現(xiàn):新品發(fā)布的時候,舊一代的產品可能會出現(xiàn)短暫的價格上漲。因為人們在心理上就認為新產品的推出,舊產品就會便宜,從而就會提高購買量。這個發(fā)現(xiàn)和我們平常的心理是完全違背的,而且如果不用數據來證明,直接講道理給大家可能還是無法相信。這就是大數據對我們很多傳統(tǒng)思維的顛覆。一旦涉及到思維的改變,往往就會引起整個社會的大變動。
大數據這個概念的出現(xiàn),讓大數據逐漸發(fā)展形成一條價值鏈。在這條價值鏈上,數據本身、技能和思維是最重要的環(huán)節(jié)。隨著互聯(lián)網技術的發(fā)展,越來越多的公司都能收集到大量的數據,這些數據也會越來越公開??墒窃谶@些公司中,不是所有的公司都有從數據中提取價值或者用數據催生創(chuàng)新思想的技能。于是就會出現(xiàn)以下兩種公司,一種是掌握了專業(yè)技能但不一定擁有數據或者提出數據創(chuàng)新性用途才能的公司,另一種就是擁有超前思維,懂得怎樣挖掘數據的新價值的創(chuàng)新公司。短時間內,我們可能會感覺擁有創(chuàng)新思維,懂得挖掘出數據新價值的大數據思維是最重要的??墒堑鹊疆a業(yè)成熟之后,所有人都知曉了大數據的意義,所有人便開始挖掘自己的大數據思維。同時,隨著科技的進步,掌握大數據技術的也將成為常態(tài)。所以到后來,整個價值鏈的核心環(huán)節(jié)還是回到了數據本身。而到那時候,大數據的公開性也就越來越小。
在大談完大數據對人類發(fā)展的積極意義之后,作者也考慮到大數據時代的風險。這一部分是作者腦洞大開的精彩之處,同時也是最荒謬的一部分。書中說大數據時代將要懲罰未來犯罪,這樣可以在嫌疑人在可能犯罪之前就把犯罪行為給防止。這樣的社會,大數據儼然已經延伸到了我們每個人生活的點滴。幾乎我們在生活中所做的一切都在大數據的“監(jiān)控”之下,我想到那時候,別說我們每個人的隱私已經沒有的了,嚴重一點可以說是我們可能連人都不算了。在我們人的社會屬性中,自由權利是一項很重要的指標。通過大數據懲罰人的未來犯罪已經否定了人的自由選擇能力和人的行為責任自負。同時,由于數據是永久保存,大數據預測也是通過每個人之前的數據來判斷,所以大數據同樣也否定了人的求善心理。還有,從現(xiàn)在各種大數據預測的結果來看,很多發(fā)言人都說大數據不是百分百的準確。所以利用大數據來判斷人的行為發(fā)展已經違背了大數據不追求精確性的特征,這也是書中自相矛盾的地方。
對于一個新事物,如果能讓大家了解這個事物并且對此產生興趣,這已經算是一本不錯的入門書了。
大數據時代的心靈雞湯
從小到大,雞湯對于我們來說一直都挺珍貴的。身體虛弱了,喝點雞湯能夠補充營養(yǎng)。心靈受傷了,看點心靈雞湯可以鼓舞人心。可是近幾年,人們生活水平提高了,營養(yǎng)富余,雞湯已經不是人們補營養(yǎng)的期待了。同樣,心靈雞湯也是如此。
心靈雞湯其實是一個很虛偽的東西。很多人都被心靈雞湯誘人的外表給迷惑。在我看來,心靈雞湯很大的一個特征就是:立人的志,但是就不告訴你實現(xiàn)志的方法。很多人每次在失意的時候就喜歡看心靈雞湯,希望能得到慰藉??赐旰笠灿X得醍醐灌頂,感覺整個世界都亮了。但又有幾個人想過喝完這些雞湯之后你除了看似重拾夢想,你還獲得了什么?你知道怎么去做嗎?《大數據時代》就是這樣一本書。整本書從頭到尾都在向讀者講述大數據的意義,當然期間也會用相應的案例來證明大數據確實有這樣的能力。但是,整本書從沒有涉及到技術層面的問題。或許對于大數據這種依靠互聯(lián)網技術的新事物,即使向讀者講技術,也沒有幾個人看得懂,可是整本書沒有一點關于大數據思維的技能引導。給出的案例中只有少數案例向讀者講述了這個公司為什么要利用大數據來解決這種問題,大多數都只是告訴讀者國外某家公司運用大數據得出了某種結論。同時,在本書中文譯作者寫的序里,強調自己翻譯這本著作的一大優(yōu)點是可以結合國內的案例來分析書中的理論,結果,看到最后一頁都沒有看到一個國內企業(yè)關于大數據運用的案例。
之所以我稱之為“心靈雞湯”,還有一個原因就是作者在書中大講特講的大數據的作用,事實上按照現(xiàn)在的經濟發(fā)展水平和社會文明發(fā)展程度是很難實現(xiàn)的。書中很多時候的理論都是要建立在社會各項文明都發(fā)展健全的基礎上才能實現(xiàn)。
大數據的“傳銷手冊”
看到這個標題,大家可能會覺得我夸大其詞,受到如此多人好評的書怎么是“傳銷手冊”呢?對于這個表達,我只想說兩點:1、此說法僅代表我個人觀點,是否認同是個人問題。2、此說法主要針對本書的上部分。
我們都知道傳銷組織在發(fā)展下線的前期是要花大力氣去培訓的,也就是洗腦。而對于一個陌生又很難以理解的事物,最好的“洗腦”方式就是重復。《大數據時代》這本書就是運用這種方式,前半部分為了讓讀者能夠接受“大數據”這個概念,作者反反復復提醒讀者大數據不是隨機采樣、不追求精確和不尋找因果關系。同時用很多看似很通俗易懂其實看完后還是不知道說了什么的案例來讓人信服大數據的作用。書中的后半部分雖然也是用這種方式來感染讀者,可后半部分中作者的暢想和對大數據的威脅分析還是對讀者有一些實質意義的,所以后半部分的“傳銷”影響就不是很重要。
大數據時代是未來的趨勢,這誰都不會否認。大數據改造了我們的生活,改變著我們的世界。不管它是以一種什么樣的姿態(tài)面向世界,它都沒有錯,因為大數據只是一種工具。但當人類開始質疑甚至恐懼大數據的時候,人類就該思考自己是否利用好這個好工具了。
大數據的心得體會篇3
商務大數據的心得體會篇八
近年來,隨著商業(yè)化的日益發(fā)展,商務數據分析作為企業(yè)提高經濟效益的利器,受到了越來越多的關注。在實際應用中,對商務數據的深入分析和挖掘,在經營決策中具有重要的意義。本文將就商務數據的分析方法、技巧和心得體會進行分析,以期對業(yè)界人士提供一些可行性的思路。
一、了解數據來源
商務數據的來源通常包括公司財務報表、企業(yè)員工信息等,首先需要了解這些數據的來源。通過不同的源訪問,將數據標準化并且進行排序,以便更加輕松地分析。另外,要確保數據庫的版本一致,即使在多個系統(tǒng)之間進行數據共享,也要確保數據一致性。對于許多公司而言,數據并不完全標準化并且需要進行清洗和過濾。因此,一份好的商務數據報告應該準確和及時的呈現(xiàn)出數據的精確性。
二、數據的清洗及整理
數據清洗和整理是商務數據分析不可缺少的部分。清洗和整理后的數據能夠有效地避免分析中的錯誤,減少對數據的重復分析。同時,可將數據進行篩選、創(chuàng)建新的字段并進行匯總,為后續(xù)數據分析提供數據基礎。在整理和處理數據的過程中,常常會遇到數據中出現(xiàn)重復、錯誤、缺失等問題。在數據清理時,該如何去除臟數據、取出缺失數據和標準化錯誤數據非常重要。除此之外,我們還要把數據所需的加工做好。例如,將年齡數據轉變?yōu)槟挲g段,通過構建維度表對數據進行分析,以便更好地為商務決策提供貢獻。
三、構建可視化儀表盤
盡管人們可以通過表格和圖形來讀取數據,但可視化儀表盤可以更加直觀地展現(xiàn)數據,讓數據更快地傳遞到相關人士身上,從而輔助商業(yè)決策。因此,我們需要針對公司和相關部門的需求,設計一份基于儀表盤的數據報告。正確的數據可視化可以快速而又精確地傳遞數據,以備分析和商業(yè)決策。一個好的儀表盤必須是可讀、可操作且易于分享、保存和導出。通過儀表盤呈現(xiàn)分析數據,而不是直接呈現(xiàn)原始數據,以及合適的可視化和顏色選項,都會為商業(yè)決策提供幫助。
四、利用工具分析數據
商務數據分析離不開工具,很多好的工具在商業(yè)建模中起到了重要作用。例如Python和R這兩個常見的數據分析編程語言,可以自動化并快速地處理數據、結構和繪制圖表。此外,Power BI這樣的數據可視化工具可以將大量數據呈現(xiàn)在一個直觀、美觀的報告中。縱覽各種工具,挑選一個適合自己或自己公司的工具,可以大幅提升數據分析效率。
五、思考背后的邏輯
數據分析不僅僅是分析數字,還要通過背后邏輯的理解來得到正確的商業(yè)決策,這是分析數據的真正價值所在。在數據分析中,不能僅僅依賴數據本身,更要利用背后的邏輯來深入分析商業(yè)的本質。一個優(yōu)秀的數據分析師應該理解公司的核心業(yè)務,采用合適的策略和流程進行應用,所以與企業(yè)的其他同事建立合作是很重要的。在分析數據時,需要不斷思考業(yè)務模型中的不同受眾,他們需要知道什么并且如何才能知道,從而提供最準確、最實用和最有洞察力的數據分析。
總結:商務數據的分析對一個公司而言非常重要,是公司經營決策的重要依據。為了分析數據并做出準確的商業(yè)決策,我們需要好的數據預處理、合適的數據可視化和分析工具、精通背后邏輯的人才團隊等綜合因素。優(yōu)秀的商業(yè)數據分析過程不僅僅是數字的展示,也涉及到對公司目標和業(yè)務模型的深入理解。我們希望以上經驗能對數據分析者提供一些實用的參考和建議。
商務大數據的心得體會篇九
商務數據是企業(yè)經營中不可或缺的重要資源,通過收集、存儲、處理、分析、展示、交流數據,可以有效提高決策效率和效果,獲取商業(yè)競爭優(yōu)勢。而數據心得體會是人們在使用商務數據的過程中所獲得的經驗、認識和見解, 是數據應用的深層次表現(xiàn)。本文將探討商務數據心得體會的幾個方面。
第二段: 數據準確性
商務數據的質量是企業(yè)數據應用的基礎,數據準確性是數據質量重要的體現(xiàn)。數據在采集和處理的過程中,需要保證準確和完整。在實際操作中我們可通過數據分析工具如表格、圖表以及數據可視化等方式,來持續(xù)監(jiān)控數據準確性。為了確保數據的準確性,我們可加強數據安全保護、培訓數據操作人員等,從而提升商務數據的質量和服務能力。
第三段: 數據應用的價值
商務數據應用的價值是評價數據應用成果的重要標準。數據應用的價值體現(xiàn)在了解用戶需求、改進軟件功能、提升客戶體驗等方面。企業(yè)可以針對不同的用戶群體的數據需求,提供針對性的數據挖掘和分析服務,以滿足用戶的真實需求。從數據應用的角度出發(fā),我們要堅持不斷鉆研數據應用的場景和技術,不斷提升數據應用的質量和效率,提高商務數據的應用價值。
第四段: 數據可視化的重要性
數據可視化是商務數據呈現(xiàn)的重要手段和途徑。數據可視化可以快速幫助人們理解和分析數據的價值,更加高效地輔助決策。如果數據可視化不合理,商務數據的應用價值就會降低。通過對商務數據中可視化圖表的精細設計,我們能更加直觀、形象地呈現(xiàn)數據分析結果。在設計數據可視化的過程中,正確地選擇圖形類型、構建復合圖像、控制信息密度等都非常關鍵。
第五段: 數據共享的意義
數據共享是不同單位或不同個體間實現(xiàn)數據共享和數據集成,提高數據利用率、加快數據創(chuàng)新與發(fā)展的途徑。數據的共享逐漸成為推動數據應用的重要推力。在數據共享過程中,如何更好地保障數據的安全、保護數據的隱私,是我們必須深入探討和解決的問題之一。只有充分認識到數據共享有必要性,理解數據共享的意義,才能促進商務數據的有序發(fā)展,為企業(yè)經營和決策提供更好的支持。
結論:
數據在商務領域的應用更加深入和廣泛,商務數據是企業(yè)決策、運營的重要工具和基礎資源,數據心得體會是數據應用的重要指標和衡量標準。通過不斷地學習、總結數據應用的細節(jié)和技巧,積累數據心得體會,才能更好地挖掘商務數據的價值,實現(xiàn)數據可視化,掌握更多的數據共享思路,使商務數據發(fā)揮其效應,為企業(yè)和個人帶來更大的價值。
商務大數據的心得體會篇十
隨著云計算和物聯(lián)網的日漸普及,大數據逐漸成為各行各業(yè)的核心資源。然而,海量的數據需要采取一些有效措施來處理和分析,以便提高數據質量和精度。由此,數據預處理成為數據挖掘中必不可少的環(huán)節(jié)。在這篇文章中,我將分享一些在大數據預處理方面的心得體會,希望能夠幫助讀者更好地應對這一挑戰(zhàn)。
第二段:數據預處理的重要性
作為數據挖掘的第一步,預處理的作用不能被忽視。一方面,在真實世界中采集的數據往往不夠完整和準確,需要通過數據預處理來清理和過濾;另一方面,數據預處理還可以通過特征選取、數據變換和數據采樣等方式,將原始數據轉化為更符合建模需求的格式,從而提高建模的精度和效率。
第三段:常用的數據預處理方法
數據預處理的方法有很多,要根據不同的數據情況和建模目的來選擇適當的方法。在我實際工作中,用到比較多的包括數據清理、數據變換和離散化等方法。其中,數據清理主要包括異常值處理、缺失值填充和重復值刪除等;數據變換主要包括歸一化、標準化和主成分分析等;而離散化則可以將連續(xù)值離散化為有限個數的區(qū)間值,方便后續(xù)分類和聚類等操作。
第四段:實踐中的應用
雖然看起來理論很簡單,但在實踐中往往遇到各種各樣的問題。比如,有時候需要自己編寫一些腳本來自動化數據預處理的過程。而這需要我們對數據的文件格式、數據類型和編程技巧都非常熟悉。此外,在實際數據處理中,還需要經常性地檢查和驗證處理結果,確保數據質量達到預期。
第五段:總結
綜上所述,數據預處理是數據挖掘中非常重要的一步,它可以提高數據質量、加快建模速度和提升建模效果。在實際應用中,我們需要結合具體業(yè)務情況和數據特征來選擇適當的預處理方法,同時也需要不斷總結經驗,提高處理效率和精度??傊?,數據預處理是數據挖掘中的一道不可或缺的工序,只有通過正確的方式和方法,才能獲得可靠和準確的數據信息。
商務大數據的心得體會篇十一
大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什么信息時代轉變?yōu)榱舜髷祿r代?大數據時代帶給了我們什么?下面是本站小編為大家收集整理的大數據時代
心得體會
,歡迎大家閱讀。
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20xx年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統(tǒng)上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰(zhàn)栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想?!薄半S著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y(tǒng)計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統(tǒng)計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統(tǒng),跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發(fā)展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統(tǒng)的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統(tǒng)計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節(jié)甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統(tǒng)計學了。但是由統(tǒng)計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規(guī)則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規(guī)定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區(qū)別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現(xiàn)科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現(xiàn)在就趁早跳樓。
還好我知道自己對什么統(tǒng)計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現(xiàn)了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續(xù)寫下去,至少加一個第四部分——大數據時代的邏輯思維。
在《大數據時代》一書中,大數據時代與小數據時代的區(qū)別:1、思維慣例。大數據時代區(qū)別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區(qū)別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。3、結構。大數據更多的體現(xiàn)在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現(xiàn)實齊頭并進,理論來創(chuàng)立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯(lián)網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。
數據未來的故事。數據的發(fā)展,給我們帶來什么預期和啟示?銀行業(yè)天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰(zhàn)也隨之而來,適應變革,適者生存。我們可以有更廣闊的業(yè)務發(fā)展空間、可以有更精準的決策判斷能力、可以有更優(yōu)秀的經營管理能力??可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創(chuàng)新思維和執(zhí)行。因此,建設“數據倉庫”,培養(yǎng)“數據思維”,養(yǎng)成“數據治理”,創(chuàng)造“數據融合”,實現(xiàn)“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩(wěn)健贏取未來。
商務大數據的心得體會篇十二
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20__年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
大數據心得體會篇2
商務大數據的心得體會篇十三
隨著互聯(lián)網技術的迅猛發(fā)展,大數據已經成為當今社會中不可忽視的力量之一。作為一種可以幫助人們收集、分析和利用海量數據的工具和方法,大數據的應用已經滲透到各行各業(yè)?!稕Q戰(zhàn)大數據》是一本關于大數據的暢銷書,通過講述一系列與大數據相關的故事和案例,向讀者展示了大數據的價值和威力。在閱讀這本書后,我深感大數據對于人類社會的影響和變革,同時也從中獲得了一些心得體會。
第一段:大數據引領社會變革
《決戰(zhàn)大數據》一書中,作者通過詳盡的案例和數據分析,清晰地展示了大數據對于人類社會的影響和變革。大數據的出現(xiàn)讓數據分析變得更加高效和準確,這對于企業(yè)的經營決策和市場預測起到了至關重要的作用。同時,大數據也對個人生活產生了深遠的影響,例如在購物、醫(yī)療和交通等方面。大數據技術和應用已經逐漸成為社會進步和發(fā)展的重要驅動力。
第二段:大數據帶來的機遇和挑戰(zhàn)
然而,大數據的發(fā)展也帶來了一系列的機遇和挑戰(zhàn)。大數據的廣泛應用使得信息變得更加透明和公開,使得市場更加公平和競爭更加激烈。同時,由于大量的數據會產生一定的隱私和安全問題,對于數據的保護和管理也成為了一個重要的議題。面對如此龐大的數據流,我們需要尋找更有效的方法和技術來分析和利用這些數據,并且制定相應的政策和規(guī)范來保護個人和企業(yè)的隱私權益。
第三段:大數據的潛力和創(chuàng)新
《決戰(zhàn)大數據》中的案例向我們展示了大數據的潛力和創(chuàng)新。通過對大數據的分析,企業(yè)可以更好地了解消費者的需求和喜好,從而提供更加個性化和優(yōu)質的產品和服務。同時,大數據也為新興產業(yè)的發(fā)展提供了有力的支持,例如人工智能、物聯(lián)網和區(qū)塊鏈等。這些新興技術和產業(yè)的興起,離不開對大數據的深入挖掘和應用。
第四段:大數據的發(fā)展與人的關系
盡管大數據的應用呈現(xiàn)出無限的潛力和前景,但我們不能忽視人的主觀能動性在其中的作用?!稕Q戰(zhàn)大數據》中的案例也充分說明了一個核心觀點:數據只是工具,利用數據需要人的智慧和創(chuàng)造力。在大數據時代,我們需要培養(yǎng)更多具備數據分析和創(chuàng)新意識的人才,并將數據和人才結合起來,形成更強大的創(chuàng)新引擎。
第五段:個人在大數據時代的思考與行動
閱讀《決戰(zhàn)大數據》讓我對大數據的價值和影響有了更深入的認識,同時也使我意識到個人在大數據時代的重要性。作為一個普通的個體,我們可以通過學習數據分析的知識和技巧,提升自己的競爭力和適應能力。在面對大數據帶來的挑戰(zhàn)時,我們要保護個人隱私的同時,也要主動參與到大數據的應用和發(fā)展中來。只有通過個人的思考和行動,我們才能更好地應對大數據時代帶來的挑戰(zhàn)和機遇。
總結:大數據已經滲透到我們生活的方方面面,對于個人和社會的影響愈發(fā)顯著?!稕Q戰(zhàn)大數據》通過講述大數據的故事和案例,讓我們更好地認識和理解大數據的價值和威力。在閱讀這本書后,我們應該思考大數據帶給我們的機遇和挑戰(zhàn),并積極參與到大數據的應用和發(fā)展中來,為人類社會的進步和發(fā)展貢獻自己的力量。
商務大數據的心得體會篇十四
大數據講座學習心得
大數據時代已經悄然到來,如何應對大數據時代帶來的挑戰(zhàn)與機遇,是我們當代大學生特別是我們計算機類專業(yè)的大學生的一個必須面對的嚴峻課題。大數據時代是我們的一個黃金時代,對我們的意義可以說就像是另一個“80年代”。在講座中秦永彬博士由一個電視劇《大太監(jiān)》中情節(jié)來深入淺出的簡單介紹了“大數據”的基本概念,并由“塔吉特”與“犯罪預測”兩個案例讓我們深切的體會到了“大數據”的對現(xiàn)今這樣一個信息時代的不可替代的巨大作用。
在前幾年本世紀初的時候,世界都稱本世紀為“信息世紀”。確實在計算機技術與互聯(lián)網技術的飛速發(fā)展過后,我們面臨了一個每天都可以“信息爆炸”的時代。打開電視,打開電腦,甚至是在街上打開手機、pda、平板電腦等等,你都可以接收到來自互聯(lián)網從世界各地上傳的各類信息:數據、視頻、圖片、音頻……這樣各類大量的數據累積之后達到了引起量變的臨界值,數據本身有潛在的價值,但價值比較分散;數據高速產生,需高速處理。大數據意味著包括交易和交互數據集在內的所有數據集,其規(guī)模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。遂有了“大數據”技術的應運而生。
現(xiàn)在,當數據的積累量足夠大的時候到來時,量變引起了質變?!按髷祿蓖ㄟ^對海量數據有針對性的分析,賦予了互聯(lián)網“智商”,這使得互聯(lián)網的作用,從簡單的數據交流和信息傳遞,上升到基于海量數據的分析,一句話“他開始思考了”。簡言之,大數據就是將碎片化的海量數據在一定的時間內完成篩選、分析,并整理成為有用的資訊,幫助用戶完成決策。借助大數據企業(yè)的決策者可以迅速感知市場需求變化,從而促使他們作出對企業(yè)更有利的決策,使得這些企業(yè)擁有更強的創(chuàng)新力和競爭力。這是繼云計算、物聯(lián)網之后it產業(yè)又一次顛覆性的技術變革,對國家治理模式、對企業(yè)的決策、組織和業(yè)務流程、對個人生活方式都將產生巨大的影響。后工業(yè)社會時代,隨著新興技術的發(fā)展與互聯(lián)網底層技術的革新,數據正在呈指數級增長,所有數據的產生形式,都是數字化。如何收集、管理和分析海量數據對于企業(yè)從事的一切商業(yè)活動都顯得尤為重要。大數據時代是信息化社會發(fā)展必然趨勢,我們只有緊緊跟隨時代發(fā)展的潮流,在技術上、制度上、價值觀念上做出迅速調整并牢牢跟進,才能在接下來新一輪的競爭中擺脫受制于人的弱勢境地,才能把握發(fā)展的方向。
首先,“大數據”究竟是什么?它有什么用?這是當下每個人初接觸“大數據”都會有的疑問,而這些疑問在秦博士的講座中我們都了解到了?!按髷祿钡摹按蟆辈粌H是單單純純指數量上的“大”,而是在諸多方面上闡釋了“大”的含義,是體現(xiàn)在數據信息是海量信息,且在動態(tài)變化和不斷增長之上。同時“大數據”在:速度(velocity)、多樣性(variety)、價值密度(value)、體量(volume)這四方面(4v)都有體現(xiàn)。其實“大數據”歸根結底還是數據,其是一種泛化的數據描述形式,有別于以往對于數據信息的表達,大數據更多地傾向于表達網絡用戶信息、新聞信息、銀行數據信息、社交媒體上的數據信息、購物網站上的用戶數據信息、規(guī)模超過tb級的數據信息等。
一、學習總結
1. 大數據的定義
采用某些技術,從技術中獲得洞察力,也就是bi或者分析,通過分析和優(yōu)化實現(xiàn)
對企業(yè)未來運營的預測。
二、心得體會
在如此快速的到來的大數據革命時代,我們還有很多知識需要學習,許多思維需要轉變,許多技術需要研究。職業(yè)規(guī)劃中,也需充分考慮到大數據對于自身職業(yè)的未來發(fā)展所帶來的機遇和挑戰(zhàn)。當我們掌握大量數據,需要考慮有多少數字化的數據,又有哪些可以通過大數據的分析處理而帶來有價值的用途?在大數據時代制勝的良藥也許是創(chuàng)新的點子,也許可以利用外部的數據,通過多維化、多層面的分析給我們日后創(chuàng)業(yè)帶來價值。借力,順勢,合作共贏。
一、什么是大數據?
百度百科中是這么解釋的:大數據(big data),指無法在可承受的時間范圍內用常規(guī)軟件工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應海量、高增長率和多樣化的信息資產。我最開始了解大數據是從《大數據時代》了解到的。
大數據在幾年特別火爆,不知道是不是以前沒關注的原因,從各種渠道了解了大數據以后,就決定開始學習了。
二、開始學習之旅
在科多大數據學習這段時間,覺得時間過的很快,講課的老師,是國家大數據標準制定專家組成員,也是一家企業(yè)的大數據架構師,老師上課忒耐心,上課方式也很好,經常給我們講一些項目中的感受和經驗,果然面對面上課效果好!
如果有問題,老師會一直講到你懂,這點必須贊。上課時間有限,我在休息時間也利用他們的仿真實操系統(tǒng)不斷的練習,剛開始確實有些迷糊,覺得很難學,到后來慢慢就入門了,學習起來就容易多了,堅持練習,最重要的就是堅持。
商務大數據的心得體會篇十五
近年來,隨著信息技術的迅猛發(fā)展,大數據已逐漸成為人們生活中的一個熱門話題。而《大數據》這本書,作為一部關于大數據的權威著作,讓我對大數據有了更深入的認識與理解。通過閱讀這本書,我不僅對大數據的概念有了一定的了解,更發(fā)現(xiàn)了大數據在各個領域中的應用與挑戰(zhàn),并對個人隱私保護等問題產生了思考。
首先,本書對大數據的概念進行了詳盡的闡述。大數據并不只是指數量龐大的數據,更重要的是指利用這些數據進行分析、挖掘和應用的過程。這本書通過實際案例和統(tǒng)計數據,將數據的價值和潛力展示給讀者。它告訴我們,大數據的處理能力和分析能力將會顯著地提升人類社會的效率和智能化水平。
其次,本書探討了大數據在各個領域中的應用與挑戰(zhàn)。在商業(yè)領域,大數據的應用已經為企業(yè)帶來了更多的商機和競爭優(yōu)勢。通過分析消費者的購買記錄、興趣愛好以及社交媒體的內容,企業(yè)能夠更準確地把握用戶的需求,為用戶提供個性化的服務。然而,由于大數據的處理涉及到海量的數據、復雜的算法以及龐大的計算能力,公司需要具備相關技能和資源才能有效地利用大數據。在政府領域,大數據也能夠幫助政府提供更高效的公共服務,更好地理解民眾的需求。然而,大數據的應用也引發(fā)了隱私保護和數據安全等問題,需要政府制定相關法律法規(guī)來保護個人隱私和數據安全。
再次,本書對大數據對個人隱私保護的問題進行了探討。隨著大數據的發(fā)展,人們的個人信息被不斷收集、分析和應用,我們的隱私已經受到了嚴重的侵犯。而大數據的應用具有隱私泄露的潛在風險,人們需要保護自己的個人隱私。為了解決這一問題,政府和企業(yè)需要共同努力,加強信息安全和隱私保護的技術手段。同時,人們也應該提高自己的信息安全意識,合理使用網絡和社交媒體,避免個人信息的泄露。
最后,本書還介紹了大數據對社會的影響。大數據的廣泛應用,改變了人們的生活方式和工作方式。我們的社會變得更加數字化、智能化。例如,在醫(yī)療領域,大數據的應用使得醫(yī)生可以更準確地進行病情診斷和治療方案選擇。在城市規(guī)劃方面,大數據的應用使城市更加智能化,提高了公共交通的運營效率和人們的生活質量。然而,大數據的應用也帶來了一些問題,如信息不對稱和社會不平等等。對于這些問題,我們需要進一步研究和探索,以找到解決之道。
綜上所述,《大數據》這本書給我留下了深刻的印象。通過閱讀這本書,我對大數據有了更深入的認識與理解,了解到了大數據的概念、應用與挑戰(zhàn),并開始思考大數據對于個人隱私保護和社會的影響。我相信,隨著大數據技術的不斷發(fā)展,大數據將進一步改變我們的生活和工作方式,為我們帶來更多的便利和創(chuàng)新。我們需要不斷學習和探索,以適應這個數字化時代的要求。
商務大數據的心得體會篇十六
數據挖掘作為一項重要的技術手段,在商務領域的應用日益廣泛。作為一名從事市場營銷的專業(yè)人士,我有幸參與了公司商務數據挖掘的實踐工作,并從中獲得了一些寶貴的心得體會。在這篇文章中,我將分享我對商務數據挖掘的理解和應用,希望能對相關從業(yè)人員有所幫助。
首先,商務數據挖掘不僅僅是簡單地分析數據,更重要的是從海量數據中挖掘出有價值的信息。在實踐中,我們常常遇到這樣的情況:大量的銷售數據中蘊藏著許多規(guī)律性的信息,但這些信息經常隱藏在瑣碎的數據之中。因此,我們需要借助數據挖掘的技術手段,提取并分析這些信息,以便更好地指導商務決策和市場營銷策略的制定。
其次,數據挖掘需要結合業(yè)務需求和專業(yè)知識,才能發(fā)揮出最大的價值。在實際工作中,最令人印象深刻的案例就是我們利用數據挖掘技術,對市場競爭對手的銷售數據進行分析,進而了解他們的銷售策略和競爭優(yōu)勢。然而,簡單的數據分析是遠遠不夠的,我們還需要深入了解行業(yè)動態(tài)、市場趨勢和消費者需求,結合個別企業(yè)的特殊情況,才能作出有針對性的分析和決策。
再次,數據挖掘需要跨部門合作,才能取得更好的效果。商務數據的來源和處理過程十分復雜,需要涉及到多個部門和崗位的合作。在過去的實踐中,我發(fā)現(xiàn)只有與IT、市場、銷售等環(huán)節(jié)的同事緊密配合,才能保證數據的準確性和全面性。同時,緊密的合作還可以實現(xiàn)數據共享和交流,從而更好地發(fā)掘數據中的價值。因此,建立良好的跨部門合作機制是進行商務數據挖掘的前提條件。
最后,商務數據挖掘是一個持續(xù)性的工作,需要不斷更新和完善。商務環(huán)境和市場需求變化快速,因此,僅僅一次的數據挖掘分析是遠遠不夠的。我們需要建立定期的數據收集和分析機制,及時捕捉市場變化的信號,并對公司的商務策略進行調整。此外,新技術的應用也要求我們不斷學習和更新知識,以適應商務數據挖掘的需求。
綜上所述,商務數據挖掘是一項重要的工作,對于公司的發(fā)展和市場競爭具有重要意義。在實踐中,我們需要充分挖掘數據中蘊藏的信息價值,結合業(yè)務需求和專業(yè)知識,跨部門合作,不斷更新和完善分析結果。我相信,隨著數據挖掘技術的不斷發(fā)展和應用,商務數據挖掘將在商界發(fā)揮出更大的作用,為企業(yè)帶來更多商機和競爭優(yōu)勢。
商務大數據的心得體會篇十七
隨著信息技術的快速發(fā)展,大數據已經成為了當代社會最為炙手可熱的話題之一。作為信息時代的產物,大數據給我們的生活帶來了巨大的改變。最近,我讀了一本名為《大數據》的書,在閱讀過程中,讓我對大數據有了更深的認識。下面我將與大家分享一下我的體會。
首先,大數據讓我們的生活更加便利?,F(xiàn)如今,大數據技術得到了廣泛的應用,人們可以通過各種技術手段輕松地獲取所需的信息。無論是購物、出行還是旅游,我們都能夠通過大數據獲取到最新的產品信息、路線規(guī)劃以及景點推薦,從而為我們的生活提供了諸多便利。比如,每當我需要購買產品時,只需在電子商務平臺上輸入關鍵詞,便可獲得大量的搜索結果,同時還能通過查看其他用戶的評價來進行篩選,這使得我們能夠更加輕松地做出購買決策。
其次,大數據為商業(yè)發(fā)展提供了新的機遇。隨著大數據技術的不斷改進,越來越多的企業(yè)開始使用大數據分析手段來處理海量的數據,從而找到市場的空白點,為企業(yè)創(chuàng)造更多商機。例如,通過對大數據的分析,電商平臺能夠通過用戶的購買行為了解用戶的興趣愛好,并根據這些數據進行精確的產品定位和個性化推薦,從而提高銷售額。大數據的出現(xiàn),使得商業(yè)發(fā)展更加精準和高效,企業(yè)可以更加了解消費者的需求,提供更好的產品和服務。
再次,大數據為決策提供了科學依據。無論是政府還是企事業(yè)單位,在制訂政策和規(guī)劃發(fā)展戰(zhàn)略時,都需要基于大量的數據進行決策。大數據的出現(xiàn)讓決策者可以更加客觀地了解社會經濟現(xiàn)狀,分析各種數據之間的關系以及相關因素對決策結果的影響,從而做出更加明智的決策。比如,在交通規(guī)劃方面,利用大數據可以實時監(jiān)測交通擁堵情況,分析交通流量以及不同道路之間的關系,從而優(yōu)化交通路線,提高交通效率。大數據的運用,為決策者提供了更準確的信息,幫助他們做出科學合理的決策。
最后,大數據也帶來了一系列的挑戰(zhàn)和問題。首先,數據安全問題成為了一個亟待解決的難題。大數據的存儲和傳輸需要龐大的計算資源,但與此同時,也給數據安全帶來了巨大的挑戰(zhàn)。隨著黑客技術的不斷發(fā)展,數據泄露和隱私侵犯的風險也在逐漸增加。其次,大數據的過濾和分析需要高度專業(yè)的技術和人才。大量的數據對于普通人來說是一種負擔和困擾,如果沒有足夠的專業(yè)人才來進行數據的處理和分析,那將影響到大數據的應用和發(fā)展。
總而言之,大數據給我們的生活和社會帶來了諸多的變化和好處,但也面臨著一些挑戰(zhàn)和問題。我認為,我們應該在充分利用大數據的優(yōu)勢的同時,加強數據安全的保護和專業(yè)人才的培養(yǎng)。只有這樣,我們才能更好地應對大數據時代的挑戰(zhàn)和機遇,并為我們的生活和社會發(fā)展創(chuàng)造更加美好的未來。
商務大數據的心得體會篇十八
大數據時代的到來,給人們的學習和生活帶來了巨大的變革。近期,我讀完了一本關于大數據的書籍《大數據》,在書中我了解到了大數據的定義、特點、應用和對社會產生的影響。通過這本書的學習,我深刻認識到了大數據對于現(xiàn)代社會的重要性,并從中汲取了一些啟示和體會。
首先,我的第一個體會是對大數據的新認識。在書中,大數據被定義為指數據量巨大、處理難度大,無法通過傳統(tǒng)的數據處理工具和方法進行處理和分析的數據。大數據的特點主要包括“四V”,即數據量大(Volume)、處理速度快(Velocity)、數據種類繁多(Variety)和價值密度低(Value)。通過學習這些概念,我意識到了大數據處理的復雜性和重要性。在現(xiàn)代社會中,隨著互聯(lián)網技術的快速發(fā)展,海量的數據正在不斷產生,而利用這些數據尋找規(guī)律、洞察趨勢對于企業(yè)和科學研究等領域都具有重要意義。
其次,我通過閱讀《大數據》這本書,對大數據應用的廣泛性有了更深入的了解。大數據不僅可以被用于商業(yè)領域的市場調研和用戶行為分析,還可以被運用于醫(yī)療、金融、政府等各個領域。例如,在醫(yī)療領域,大數據分析可以幫助醫(yī)生更準確地診斷疾病,提高治療效果;在金融領域,大數據可以用于風險評估和投資策略制定。這些例子讓我認識到大數據不僅僅是一個概念,它已經深入到我們的生活和工作中,并對各個領域產生了重要的影響。
第三,大數據在社會中的影響力也讓我深受觸動。通過大數據的分析,科學家們可以預測自然災害的發(fā)生和規(guī)模,幫助人們采取相應的措施減少災害造成的損失;政府們可以利用大數據分析來改進公共服務和決策,提高社會治理效能。大數據還可以通過對人群行為的分析,為企業(yè)提供精準的廣告定位和銷售策略,幫助企業(yè)提高競爭力。大數據的應用正引領著社會的進步和發(fā)展,讓我感到對于大數據的學習和掌握變得格外重要。
第四,在書中我還學到了大數據的應對方法和技術。大數據處理的復雜性要求我們運用先進的技術和工具。例如,云計算能夠提供強大的計算和存儲能力,幫助我們處理海量的數據;機器學習和人工智能則能夠幫助我們從復雜的數據中提取有價值的信息。了解到這些技術后,我決定在大數據領域繼續(xù)深入學習,提高自己的技術水平。
最后,通過讀完《大數據》,我深刻體會到大數據的革命性和不可逆轉性。大數據已經成為了當今社會的一個重要標志,影響著我們生活的各個方面。不僅是企業(yè)和科研機構,普通人也需要掌握一定的大數據分析和處理能力,才能適應這個快速變化的時代。因此,在日常生活中,我們要提高自己對于大數據的認識和運用,并不斷學習相關的知識和技能。
總之,通過閱讀《大數據》,我對大數據有了全新的認識,了解到了其廣泛的應用領域和對社會的重要影響。同時,我也學到了一些大數據的應對方法和技術。大數據已經成為一個時代的產物,對于每個人來說,掌握大數據的知識和技能變得愈發(fā)重要。我希望通過自己的努力,能夠在大數據時代中不斷學習和成長,為社會的發(fā)展貢獻自己的力量。
商務大數據的心得體會篇十九
數據挖掘是一種通過探索和分析海量數據,提取出有用的信息和知識的過程。在商務領域中,數據挖掘的應用已經越來越重要。通過深入學習和實踐,我獲得了一些關于商務數據挖掘的心得和體會。
首先,商務數據挖掘的背后是數據質量的保證。數據的質量直接影響到數據挖掘的效果。因此,在進行商務數據挖掘之前,我們應該首先對數據進行清洗和預處理。清洗數據是為了去除重復、缺失或錯誤的數據,從而提高數據的準確性和完整性。預處理數據則是對數據進行特征選擇、規(guī)范化和歸一化等處理,以便更好地應用數據挖掘算法。只有經過充分的數據清洗和預處理,我們才能得到準確和可靠的挖掘結果。
其次,合適的數據挖掘算法是取得好的效果的關鍵。商務數據挖掘應用廣泛,包括關聯(lián)規(guī)則挖掘、聚類分析、預測建模等。不同的問題需要采用不同的數據挖掘算法。例如,我們可以使用關聯(lián)規(guī)則挖掘算法找到不同產品之間的關聯(lián)性,以便設計更好的銷售策略;聚類分析可以幫助我們將客戶劃分成不同的群體,以便精準營銷;而預測建??梢詭椭覀冾A測市場需求和銷售額。選擇合適的數據挖掘算法是非常重要的,它可以提高商務決策的準確性和效率。
另外,數據可視化在商務數據挖掘中的作用不可忽視。數據可視化可以將海量的數據以圖表、圖像和動畫的形式展現(xiàn)出來,使得復雜的數據更加直觀和易懂。通過數據可視化,我們可以更好地發(fā)現(xiàn)數據的規(guī)律和趨勢,從而作出更明智的商務決策。例如,通過繪制產品銷售地域分布圖,我們可以更清晰地了解產品的市場覆蓋情況;通過繪制用戶購買路徑圖,我們可以更好地分析用戶行為并優(yōu)化用戶體驗。因此,在商務數據挖掘中,我們應該注重數據的可視化,將數據轉化為有意義的圖形化信息。
最后,數據挖掘的應用是一個持續(xù)不斷的過程。商務領域的數據變化非??焖伲袌鲂枨蟮淖兓埠苎杆?。因此,我們不能僅僅停留在一次性的數據挖掘分析中,而應該持續(xù)地進行數據挖掘和分析工作。通過不斷地監(jiān)測和分析數據,我們可以及時發(fā)現(xiàn)和預測市場的變化和趨勢,從而及時作出相應的調整和決策。數據挖掘的應用是一個循環(huán)的過程,需要不斷地進行數據收集、清洗、預處理、模型構建、結果評估等環(huán)節(jié),以實現(xiàn)商務數據挖掘的持續(xù)應用和價值。
綜上所述,商務數據挖掘是一項非常重要的工作。通過數據挖掘,我們可以從海量的數據中提取出有用的信息和知識,幫助企業(yè)進行商務決策和市場預測。然而,商務數據挖掘也面臨著挑戰(zhàn),如數據質量的保證、合適的算法的選擇、數據可視化的應用和持續(xù)不斷的工作。只有加強這些方面的工作,我們才能取得更好的商務數據挖掘效果,并為企業(yè)帶來更大的商業(yè)價值。
商務大數據的心得體會篇一
近年來,隨著電子商務的蓬勃發(fā)展,電子商務大數據的重要性也日益凸顯。在電子商務領域,大數據已經成為企業(yè)競爭力的關鍵所在,對于企業(yè)發(fā)展來說,掌握和運用好大數據已經成為企業(yè)必不可少的一部分。
二、大數據在電子商務中的應用
1. 數據分析
在電子商務中,大數據的主要應用就是數據分析。通過對用戶行為數據、交易數據、瀏覽數據等的分析,可以更好地了解消費者的需求,掌握市場趨勢,優(yōu)化商品的推廣策略,提高銷售效率。例如,淘寶通過數據分析,可以根據不同用戶的購買記錄和瀏覽記錄,提供個性化的推薦商品,提高用戶的購買率。
2. 營銷活動
電子商務企業(yè)可以通過大數據,更好的規(guī)劃營銷活動,提高宣傳和廣告效果。例如,京東在“618”大促期間,通過大數據分析用戶購買記錄,進行精準營銷,推送更符合用戶需求的商品,提高銷售額和客戶滿意度。
3. 倉儲物流
電子商務企業(yè)可以通過大數據技術,優(yōu)化倉儲物流流程,提高倉儲物流效率,降低物流成本。例如,騰訊物流通過大數據技術實現(xiàn)了自動化倉儲管理,減少了人工干預的時間和成本,提高倉庫的處理能力,縮短了訂單處理時間。
三、大數據在電商企業(yè)管理中的作用
1. 決策支持
大數據能夠為企業(yè)的決策提供支持,可以根據大數據的分析,制定合適的戰(zhàn)略和計劃。例如,一個電子商務企業(yè)可以通過數據分析,確定新產品的上線時間和市場定位。
2. 客戶服務和維護
大數據可以幫助企業(yè)提高客戶服務的質量和效率。企業(yè)可以通過對客戶行為數據的分析,提供個性化的客戶服務,滿足客戶的需求和要求。
3. 風險控制
大數據技術可以幫助企業(yè)識別和降低風險??梢酝ㄟ^對互聯(lián)網數據的監(jiān)控,發(fā)現(xiàn)市場競爭對手的動態(tài),以及企業(yè)自身風險的發(fā)展趨勢,從而采取相應的措施,保護企業(yè)的利益。
四、大數據與電商安全的關系
1. 數據保護
在大數據應用中,數據保護是至關重要的。企業(yè)必須保障用戶數據的隱私和安全,防止數據泄露和盜用。
2. 網絡安全
電子商務平臺的網絡安全是大數據應用過程中必須面對的問題,必須保障在線交易的安全和穩(wěn)定性。
五、結論
大數據技術已經成為電子商務企業(yè)的重要組成部分,在電子商務領域中的應用,可以提高企業(yè)效率、服務和營銷質量,降低成本和風險,實現(xiàn)可持續(xù)發(fā)展。電子商務企業(yè)應該積極引入大數據技術,合理運用,走在行業(yè)的前沿。同時,企業(yè)應該重視數據保護和網絡安全,建設強大的數據安全體系,保障企業(yè)信息的安全和穩(wěn)定。
商務大數據的心得體會篇二
隨著互聯(lián)網技術的迅速發(fā)展和商務活動的日益頻繁,商務數據的規(guī)模也與日俱增。在這個數據爆炸的時代,如何利用商務大數據分析有效地開展業(yè)務活動成為了許多企業(yè)急需解決的問題。在我的工作中,我深刻體會到了商務大數據分析的重要性,并積累了一些心得體會。在下文中,我將分別從數據采集、數據清洗、數據分析、數據可視化和數據應用五個方面進行闡述。
首先,數據采集是商務大數據分析的基礎。企業(yè)需要從各個渠道收集大量的商業(yè)數據,并將其進行整合。然而,在實際操作中,我發(fā)現(xiàn)數據的采集并不像想象中那么簡單。不同渠道的數據格式和接口各異,需要耗費大量的時間和精力進行整合。因此,建立一個高效的數據采集系統(tǒng)是至關重要的,可以減少重復工作和錯誤,提高數據的準確性和完整性。
其次,數據清洗是商務大數據分析的關鍵。經過數據采集后,我們會發(fā)現(xiàn)數據中可能存在一些異?;蝈e誤的情況,例如缺失值、重復值或不一致的格式。這就需要我們進行數據清洗工作,以確保數據的質量和可用性。在我的工作經驗中,我發(fā)現(xiàn)數據清洗工作是非常繁瑣和耗時的,需要我們仔細檢查每一個數據項,并進行相應的處理。因此,我們可以借助一些自動化工具和技術,提高數據清洗的效率和準確性。
第三,數據分析是商務大數據分析的核心。通過對采集和清洗后的數據進行分析,我們可以發(fā)現(xiàn)數據中的模式、趨勢和關聯(lián),從而提供有價值的商業(yè)洞察。在我的工作中,我主要使用統(tǒng)計分析和機器學習算法來進行數據分析。統(tǒng)計分析可以幫助我們找到數據中的規(guī)律和趨勢,而機器學習算法則可以幫助我們發(fā)現(xiàn)數據中的復雜模式和關聯(lián)。通過結合這兩種方法,我們可以得到更全面和準確的數據分析結果。
第四,數據可視化是商務大數據分析的重要手段。通過將數據轉化為圖表、圖像和動畫等可視化形式,我們可以更直觀地展示數據的分析結果,提高數據的理解和溝通效果。在我的工作中,我經常使用各種可視化工具和技術,如表格、柱狀圖、折線圖、餅圖和熱力圖等。通過合理選擇和運用這些工具和技術,我們可以將復雜的數據分析結果轉化為簡潔明了的圖表和圖像,方便用戶進行查看和分析。
最后,數據應用是商務大數據分析的終極目標。通過數據分析和可視化,我們可以為企業(yè)提供有價值的商業(yè)洞察,并為決策者提供關鍵的參考信息。在我的工作中,我經常將數據分析結果呈現(xiàn)給我的上級和同事,并與他們進行討論和決策。通過這種方式,我們可以及時地發(fā)現(xiàn)問題、分析原因和制定解決方案,從而促進企業(yè)的發(fā)展和壯大。
綜上所述,商務大數據分析是一項復雜而又重要的工作。在實際操作中,我們需要關注數據采集、數據清洗、數據分析、數據可視化和數據應用等各個環(huán)節(jié),并不斷優(yōu)化和改進我們的工作方法和技術手段。只有這樣,我們才能更好地利用商務大數據分析開展業(yè)務活動,為企業(yè)帶來更大的價值。
商務大數據的心得體會篇三
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統(tǒng)上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰(zhàn)栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y(tǒng)計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統(tǒng)計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統(tǒng),跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發(fā)展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統(tǒng)的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統(tǒng)計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節(jié)甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統(tǒng)計學了。但是由統(tǒng)計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規(guī)則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規(guī)定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區(qū)別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現(xiàn)科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現(xiàn)在就趁早跳樓。
還好我知道自己對什么統(tǒng)計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現(xiàn)了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續(xù)寫下去,至少加一個第四部分——大數據時代的邏輯思維。
大數據的心得體會篇4
商務大數據的心得體會篇四
電子商務大數據是當前互聯(lián)網領域內的熱門話題。電子商務的發(fā)展,讓我們在日常生活中越來越離不開互聯(lián)網,而大數據又是電子商務的根基和推動力。然而,在大數據時代,我們如何更好地應對電子商務大數據呢?本文將從數據處理、數據分析和數據應用三個方面,分享我在電子商務大數據領域的心得體會。
第二段:數據處理
在電子商務領域,數據處理是一個重要的環(huán)節(jié)。由于電子商務領域涉及到各種各樣的數據類型,數據量也非常龐大,因此在數據處理環(huán)節(jié)需要選擇合適的工具和技術,以提高數據處理效率。例如,Hadoop和Spark等開源大數據處理框架可以幫助我們高效地存儲和處理海量數據。此外,數據清洗和標準化也非常重要,它們可以消除噪聲和重復數據,提高數據質量和準確性,從而更好地為數據分析和應用提供基礎。
第三段:數據分析
數據分析是電子商務大數據的核心環(huán)節(jié)。在數據分析環(huán)節(jié)中,數據被轉化為有用的信息,以幫助企業(yè)更好地了解消費者和市場動態(tài)。數據分析可以幫助我們深入了解消費者行為和偏好,指引市場營銷策略和產品開發(fā)方向。例如,通過行為分析和用戶畫像,可以了解用戶喜好和購買意向,以更好地開展精準營銷。此外,數據分析還可以幫助企業(yè)預測市場變化、識別潛在風險和機遇,為企業(yè)戰(zhàn)略決策提供依據。
第四段:數據應用
數據應用是電子商務大數據的重要環(huán)節(jié)。數據分析結果只有在實際場景中得到應用,才能產生實際效果。在數據應用環(huán)節(jié)中,可以通過制定營銷策略、產品策略等方式,將數據分析的結果落地。此外,數據應用還可以幫助企業(yè)優(yōu)化運營流程、提高效率和降低成本,提升企業(yè)競爭力。例如,在供應鏈管理中,通過數據分析和應用,可以實現(xiàn)資源優(yōu)化、成本控制和時間管理。
第五段:總結
在電子商務大數據時代,合理處理、高效分析和精準應用是企業(yè)成功的關鍵。數據處理、數據分析和數據應用是一個緊密相連的整體,只有它們的協(xié)同作用,才能取得最好的效果。同時,在電子商務大數據的時代,我們需要不斷學習和應用新技術和新工具,不斷創(chuàng)新和改進數據處理、分析和應用的方法和手段。這樣,才能在電子商務領域立足,獲取更大價值。
商務大數據的心得體會篇五
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20__年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
大數據的心得體會篇2
商務大數據的心得體會篇六
在當今商業(yè)世界中,數據已成為企業(yè)成功的關鍵。商務數據可用于支持企業(yè)決策、提高生產效率和促進業(yè)務增長。然而,對于許多企業(yè)來說,并不容易從大量的數據中提取有用的信息。因此,在這篇文章中,我將分享一些我在商務數據方面的心得體會。
第二段:數據收集
在開始分析數據之前,首先需要收集數據。業(yè)務數據可以來源于許多渠道,如企業(yè)內部系統(tǒng)、社交媒體、市場調查和消費者反饋等。收集數據的質量和完整性非常重要,因為不完整或不準確的數據可能會導致錯誤的決策。因此,在收集數據時,我們要確保數據來源的可靠性和準確性,以便我們能夠從中得出有意義的結論。
第三段:數據分析
收集數據后,我們需要使用數據分析工具來理解和識別模式。有幾種常見的分析技術,包括聚類分析、回歸分析和預測建模等。聚類分析可以讓我們將相似的數據分組到一起,回歸分析可以幫助我們確定因素之間的關系,而預測建??梢詭椭覀冾A測未來的趨勢。無論使用哪種技術,都要確保分析結論是可信的,并且需要一定程度的技術知識才能正確地分析數據。
第四段:數據可視化
分析數據后,下一步是通過可視化工具來呈現(xiàn)數據。數據可視化可以幫助我們更好地理解和解釋數據,從而更好地與團隊分享數據??梢允褂酶鞣N圖表和圖形,如條形圖、折線圖、散點圖和熱力圖等。但重要的是,圖表和圖形必須易于理解和使用,并且應該與數據本身一致。如果數據工具集成了可視化工具,那么這些工具將會更為強大。
第五段:數據應用
收集、分析和呈現(xiàn)數據僅僅是第一步。最后,我們需要理解并應用數據來解決實際問題。其中一種應用方式是在決策制定過程中使用數據。通過對數據的分析和呈現(xiàn),可以幫助企業(yè)了解市場和消費者的需求,制定更好的戰(zhàn)略和決策。此外,通過數據,還可以優(yōu)化業(yè)務流程和提高生產效率。
結論:
我們現(xiàn)在生活在一個基于數據和分析的時代。商務數據的價值越來越高,但如何理解并應用數據仍然是一個挑戰(zhàn)。通過對數據收集、分析、可視化和應用的理解,我們可以更好地利用商務數據來支持我們企業(yè)的成功和繁榮。
商務大數據的心得體會篇七
“大數據”概念早在1980年就有國外的學者提出,可是最近幾年才廣泛受到大家的關注。當“大數據”這個概念傳到中國的時候,瞬間引起了轟動。隨即,各種有關“大數據”的資料和書籍充斥的我們的視野。隨意打開某個電子商務平臺圖書類頁面,在搜索框中搜索“大數據”三個字,就會出現(xiàn)好多本有關“大數據”的書籍??墒?,有一個很有趣的現(xiàn)象就是:幾乎所有的平臺上,出現(xiàn)的第一本關于“大數據”的書籍一定是《大數據時代》。一點進去,這本書推薦欄里的第一句話就是:迄今為止全世界最好的一本大數據專著。同時,為這本書做推薦的都是各行業(yè)的精英領袖。所有“大數據”方面的書籍也是這本書銷量最高,評價最好。
我從來不會因為哪本書暢銷和很多人推薦就盲目跟風的去看一本書。因為我知道通常在這種情況下選擇一本書,整個閱讀的體會和感受是無法遵從自己的內心的,整個過程都很容易夾雜著別人對這本書的感受。所以通常我讀書的節(jié)奏大多都是跟不上“潮流”的,但往往經過風雨洗禮之后沉淀下來的都是精華。坦白講,閱讀這本書的初衷并不是因為我想從書中獲取到多少大數據方面的精華,只是很想知道對于這么一個很直白的名詞,作者是怎么寫出這么厚的一本書的。這種初衷或許很無知和幼稚,可就是這種“愚蠢”的好奇心,讓我更透徹的看到書中的精華。
在看《大數據時代》這本書之前,我的所有讀后感都是集中在書籍給了我什么思考。對于這本書的讀后感,除了觀點碰撞之外,我還會加上大部分個人看這本書的體會。因為這本書,已經完全讓我模糊了大多數人口中的“全世界最好的書”是一種什么標準。也許《大數據時代》真的無法承載那么高的贊美!
大數據時代的入門書
看完這本書,我隨意調查了一些閱讀過這本書并且給這本書絕對好評的朋友。詢問他們這本書好在哪里?大多數的回答是說《大數據時代》這本書讓對大數據一無所知的他們了解了大數據這個概念,同時通過很多案例說明原來大數據能有這么大的用處,影響會有這么大!僅此而已。我看完這本書最大的感受是這本書分為上、下兩部分。前120多頁為上部分,后120多頁為下部分。之所以說《大數據時代》是一本關于大數據的入門書,是因為這本書用了前面120多頁的篇幅反復的強調大數據的出現(xiàn)對社會發(fā)展影響很大,并且要人們轉變小數據時代慣有的思想。所以整本書的前半部分就強調大數據時代的三個轉變:1、大數據利用所有的數據,而不再僅僅依靠一小部分數據,不再依賴于隨機采樣。2、大數據數據多,不再熱衷于追求精確性,也不再期待精確性。3、大數據時代不再熱衷于尋找因果關系,而是追求相關關系。所以整個上半部分沒什么可詳說的。我們重點聊聊本書的后半部分。
既然一直都在強調大數據對我們的意義,總要有具體體現(xiàn)。整本書中,我感觸最大的一個案例就是某公司通過分析大數據發(fā)現(xiàn):新品發(fā)布的時候,舊一代的產品可能會出現(xiàn)短暫的價格上漲。因為人們在心理上就認為新產品的推出,舊產品就會便宜,從而就會提高購買量。這個發(fā)現(xiàn)和我們平常的心理是完全違背的,而且如果不用數據來證明,直接講道理給大家可能還是無法相信。這就是大數據對我們很多傳統(tǒng)思維的顛覆。一旦涉及到思維的改變,往往就會引起整個社會的大變動。
大數據這個概念的出現(xiàn),讓大數據逐漸發(fā)展形成一條價值鏈。在這條價值鏈上,數據本身、技能和思維是最重要的環(huán)節(jié)。隨著互聯(lián)網技術的發(fā)展,越來越多的公司都能收集到大量的數據,這些數據也會越來越公開??墒窃谶@些公司中,不是所有的公司都有從數據中提取價值或者用數據催生創(chuàng)新思想的技能。于是就會出現(xiàn)以下兩種公司,一種是掌握了專業(yè)技能但不一定擁有數據或者提出數據創(chuàng)新性用途才能的公司,另一種就是擁有超前思維,懂得怎樣挖掘數據的新價值的創(chuàng)新公司。短時間內,我們可能會感覺擁有創(chuàng)新思維,懂得挖掘出數據新價值的大數據思維是最重要的??墒堑鹊疆a業(yè)成熟之后,所有人都知曉了大數據的意義,所有人便開始挖掘自己的大數據思維。同時,隨著科技的進步,掌握大數據技術的也將成為常態(tài)。所以到后來,整個價值鏈的核心環(huán)節(jié)還是回到了數據本身。而到那時候,大數據的公開性也就越來越小。
在大談完大數據對人類發(fā)展的積極意義之后,作者也考慮到大數據時代的風險。這一部分是作者腦洞大開的精彩之處,同時也是最荒謬的一部分。書中說大數據時代將要懲罰未來犯罪,這樣可以在嫌疑人在可能犯罪之前就把犯罪行為給防止。這樣的社會,大數據儼然已經延伸到了我們每個人生活的點滴。幾乎我們在生活中所做的一切都在大數據的“監(jiān)控”之下,我想到那時候,別說我們每個人的隱私已經沒有的了,嚴重一點可以說是我們可能連人都不算了。在我們人的社會屬性中,自由權利是一項很重要的指標。通過大數據懲罰人的未來犯罪已經否定了人的自由選擇能力和人的行為責任自負。同時,由于數據是永久保存,大數據預測也是通過每個人之前的數據來判斷,所以大數據同樣也否定了人的求善心理。還有,從現(xiàn)在各種大數據預測的結果來看,很多發(fā)言人都說大數據不是百分百的準確。所以利用大數據來判斷人的行為發(fā)展已經違背了大數據不追求精確性的特征,這也是書中自相矛盾的地方。
對于一個新事物,如果能讓大家了解這個事物并且對此產生興趣,這已經算是一本不錯的入門書了。
大數據時代的心靈雞湯
從小到大,雞湯對于我們來說一直都挺珍貴的。身體虛弱了,喝點雞湯能夠補充營養(yǎng)。心靈受傷了,看點心靈雞湯可以鼓舞人心。可是近幾年,人們生活水平提高了,營養(yǎng)富余,雞湯已經不是人們補營養(yǎng)的期待了。同樣,心靈雞湯也是如此。
心靈雞湯其實是一個很虛偽的東西。很多人都被心靈雞湯誘人的外表給迷惑。在我看來,心靈雞湯很大的一個特征就是:立人的志,但是就不告訴你實現(xiàn)志的方法。很多人每次在失意的時候就喜歡看心靈雞湯,希望能得到慰藉??赐旰笠灿X得醍醐灌頂,感覺整個世界都亮了。但又有幾個人想過喝完這些雞湯之后你除了看似重拾夢想,你還獲得了什么?你知道怎么去做嗎?《大數據時代》就是這樣一本書。整本書從頭到尾都在向讀者講述大數據的意義,當然期間也會用相應的案例來證明大數據確實有這樣的能力。但是,整本書從沒有涉及到技術層面的問題。或許對于大數據這種依靠互聯(lián)網技術的新事物,即使向讀者講技術,也沒有幾個人看得懂,可是整本書沒有一點關于大數據思維的技能引導。給出的案例中只有少數案例向讀者講述了這個公司為什么要利用大數據來解決這種問題,大多數都只是告訴讀者國外某家公司運用大數據得出了某種結論。同時,在本書中文譯作者寫的序里,強調自己翻譯這本著作的一大優(yōu)點是可以結合國內的案例來分析書中的理論,結果,看到最后一頁都沒有看到一個國內企業(yè)關于大數據運用的案例。
之所以我稱之為“心靈雞湯”,還有一個原因就是作者在書中大講特講的大數據的作用,事實上按照現(xiàn)在的經濟發(fā)展水平和社會文明發(fā)展程度是很難實現(xiàn)的。書中很多時候的理論都是要建立在社會各項文明都發(fā)展健全的基礎上才能實現(xiàn)。
大數據的“傳銷手冊”
看到這個標題,大家可能會覺得我夸大其詞,受到如此多人好評的書怎么是“傳銷手冊”呢?對于這個表達,我只想說兩點:1、此說法僅代表我個人觀點,是否認同是個人問題。2、此說法主要針對本書的上部分。
我們都知道傳銷組織在發(fā)展下線的前期是要花大力氣去培訓的,也就是洗腦。而對于一個陌生又很難以理解的事物,最好的“洗腦”方式就是重復。《大數據時代》這本書就是運用這種方式,前半部分為了讓讀者能夠接受“大數據”這個概念,作者反反復復提醒讀者大數據不是隨機采樣、不追求精確和不尋找因果關系。同時用很多看似很通俗易懂其實看完后還是不知道說了什么的案例來讓人信服大數據的作用。書中的后半部分雖然也是用這種方式來感染讀者,可后半部分中作者的暢想和對大數據的威脅分析還是對讀者有一些實質意義的,所以后半部分的“傳銷”影響就不是很重要。
大數據時代是未來的趨勢,這誰都不會否認。大數據改造了我們的生活,改變著我們的世界。不管它是以一種什么樣的姿態(tài)面向世界,它都沒有錯,因為大數據只是一種工具。但當人類開始質疑甚至恐懼大數據的時候,人類就該思考自己是否利用好這個好工具了。
大數據的心得體會篇3
商務大數據的心得體會篇八
近年來,隨著商業(yè)化的日益發(fā)展,商務數據分析作為企業(yè)提高經濟效益的利器,受到了越來越多的關注。在實際應用中,對商務數據的深入分析和挖掘,在經營決策中具有重要的意義。本文將就商務數據的分析方法、技巧和心得體會進行分析,以期對業(yè)界人士提供一些可行性的思路。
一、了解數據來源
商務數據的來源通常包括公司財務報表、企業(yè)員工信息等,首先需要了解這些數據的來源。通過不同的源訪問,將數據標準化并且進行排序,以便更加輕松地分析。另外,要確保數據庫的版本一致,即使在多個系統(tǒng)之間進行數據共享,也要確保數據一致性。對于許多公司而言,數據并不完全標準化并且需要進行清洗和過濾。因此,一份好的商務數據報告應該準確和及時的呈現(xiàn)出數據的精確性。
二、數據的清洗及整理
數據清洗和整理是商務數據分析不可缺少的部分。清洗和整理后的數據能夠有效地避免分析中的錯誤,減少對數據的重復分析。同時,可將數據進行篩選、創(chuàng)建新的字段并進行匯總,為后續(xù)數據分析提供數據基礎。在整理和處理數據的過程中,常常會遇到數據中出現(xiàn)重復、錯誤、缺失等問題。在數據清理時,該如何去除臟數據、取出缺失數據和標準化錯誤數據非常重要。除此之外,我們還要把數據所需的加工做好。例如,將年齡數據轉變?yōu)槟挲g段,通過構建維度表對數據進行分析,以便更好地為商務決策提供貢獻。
三、構建可視化儀表盤
盡管人們可以通過表格和圖形來讀取數據,但可視化儀表盤可以更加直觀地展現(xiàn)數據,讓數據更快地傳遞到相關人士身上,從而輔助商業(yè)決策。因此,我們需要針對公司和相關部門的需求,設計一份基于儀表盤的數據報告。正確的數據可視化可以快速而又精確地傳遞數據,以備分析和商業(yè)決策。一個好的儀表盤必須是可讀、可操作且易于分享、保存和導出。通過儀表盤呈現(xiàn)分析數據,而不是直接呈現(xiàn)原始數據,以及合適的可視化和顏色選項,都會為商業(yè)決策提供幫助。
四、利用工具分析數據
商務數據分析離不開工具,很多好的工具在商業(yè)建模中起到了重要作用。例如Python和R這兩個常見的數據分析編程語言,可以自動化并快速地處理數據、結構和繪制圖表。此外,Power BI這樣的數據可視化工具可以將大量數據呈現(xiàn)在一個直觀、美觀的報告中。縱覽各種工具,挑選一個適合自己或自己公司的工具,可以大幅提升數據分析效率。
五、思考背后的邏輯
數據分析不僅僅是分析數字,還要通過背后邏輯的理解來得到正確的商業(yè)決策,這是分析數據的真正價值所在。在數據分析中,不能僅僅依賴數據本身,更要利用背后的邏輯來深入分析商業(yè)的本質。一個優(yōu)秀的數據分析師應該理解公司的核心業(yè)務,采用合適的策略和流程進行應用,所以與企業(yè)的其他同事建立合作是很重要的。在分析數據時,需要不斷思考業(yè)務模型中的不同受眾,他們需要知道什么并且如何才能知道,從而提供最準確、最實用和最有洞察力的數據分析。
總結:商務數據的分析對一個公司而言非常重要,是公司經營決策的重要依據。為了分析數據并做出準確的商業(yè)決策,我們需要好的數據預處理、合適的數據可視化和分析工具、精通背后邏輯的人才團隊等綜合因素。優(yōu)秀的商業(yè)數據分析過程不僅僅是數字的展示,也涉及到對公司目標和業(yè)務模型的深入理解。我們希望以上經驗能對數據分析者提供一些實用的參考和建議。
商務大數據的心得體會篇九
商務數據是企業(yè)經營中不可或缺的重要資源,通過收集、存儲、處理、分析、展示、交流數據,可以有效提高決策效率和效果,獲取商業(yè)競爭優(yōu)勢。而數據心得體會是人們在使用商務數據的過程中所獲得的經驗、認識和見解, 是數據應用的深層次表現(xiàn)。本文將探討商務數據心得體會的幾個方面。
第二段: 數據準確性
商務數據的質量是企業(yè)數據應用的基礎,數據準確性是數據質量重要的體現(xiàn)。數據在采集和處理的過程中,需要保證準確和完整。在實際操作中我們可通過數據分析工具如表格、圖表以及數據可視化等方式,來持續(xù)監(jiān)控數據準確性。為了確保數據的準確性,我們可加強數據安全保護、培訓數據操作人員等,從而提升商務數據的質量和服務能力。
第三段: 數據應用的價值
商務數據應用的價值是評價數據應用成果的重要標準。數據應用的價值體現(xiàn)在了解用戶需求、改進軟件功能、提升客戶體驗等方面。企業(yè)可以針對不同的用戶群體的數據需求,提供針對性的數據挖掘和分析服務,以滿足用戶的真實需求。從數據應用的角度出發(fā),我們要堅持不斷鉆研數據應用的場景和技術,不斷提升數據應用的質量和效率,提高商務數據的應用價值。
第四段: 數據可視化的重要性
數據可視化是商務數據呈現(xiàn)的重要手段和途徑。數據可視化可以快速幫助人們理解和分析數據的價值,更加高效地輔助決策。如果數據可視化不合理,商務數據的應用價值就會降低。通過對商務數據中可視化圖表的精細設計,我們能更加直觀、形象地呈現(xiàn)數據分析結果。在設計數據可視化的過程中,正確地選擇圖形類型、構建復合圖像、控制信息密度等都非常關鍵。
第五段: 數據共享的意義
數據共享是不同單位或不同個體間實現(xiàn)數據共享和數據集成,提高數據利用率、加快數據創(chuàng)新與發(fā)展的途徑。數據的共享逐漸成為推動數據應用的重要推力。在數據共享過程中,如何更好地保障數據的安全、保護數據的隱私,是我們必須深入探討和解決的問題之一。只有充分認識到數據共享有必要性,理解數據共享的意義,才能促進商務數據的有序發(fā)展,為企業(yè)經營和決策提供更好的支持。
結論:
數據在商務領域的應用更加深入和廣泛,商務數據是企業(yè)決策、運營的重要工具和基礎資源,數據心得體會是數據應用的重要指標和衡量標準。通過不斷地學習、總結數據應用的細節(jié)和技巧,積累數據心得體會,才能更好地挖掘商務數據的價值,實現(xiàn)數據可視化,掌握更多的數據共享思路,使商務數據發(fā)揮其效應,為企業(yè)和個人帶來更大的價值。
商務大數據的心得體會篇十
隨著云計算和物聯(lián)網的日漸普及,大數據逐漸成為各行各業(yè)的核心資源。然而,海量的數據需要采取一些有效措施來處理和分析,以便提高數據質量和精度。由此,數據預處理成為數據挖掘中必不可少的環(huán)節(jié)。在這篇文章中,我將分享一些在大數據預處理方面的心得體會,希望能夠幫助讀者更好地應對這一挑戰(zhàn)。
第二段:數據預處理的重要性
作為數據挖掘的第一步,預處理的作用不能被忽視。一方面,在真實世界中采集的數據往往不夠完整和準確,需要通過數據預處理來清理和過濾;另一方面,數據預處理還可以通過特征選取、數據變換和數據采樣等方式,將原始數據轉化為更符合建模需求的格式,從而提高建模的精度和效率。
第三段:常用的數據預處理方法
數據預處理的方法有很多,要根據不同的數據情況和建模目的來選擇適當的方法。在我實際工作中,用到比較多的包括數據清理、數據變換和離散化等方法。其中,數據清理主要包括異常值處理、缺失值填充和重復值刪除等;數據變換主要包括歸一化、標準化和主成分分析等;而離散化則可以將連續(xù)值離散化為有限個數的區(qū)間值,方便后續(xù)分類和聚類等操作。
第四段:實踐中的應用
雖然看起來理論很簡單,但在實踐中往往遇到各種各樣的問題。比如,有時候需要自己編寫一些腳本來自動化數據預處理的過程。而這需要我們對數據的文件格式、數據類型和編程技巧都非常熟悉。此外,在實際數據處理中,還需要經常性地檢查和驗證處理結果,確保數據質量達到預期。
第五段:總結
綜上所述,數據預處理是數據挖掘中非常重要的一步,它可以提高數據質量、加快建模速度和提升建模效果。在實際應用中,我們需要結合具體業(yè)務情況和數據特征來選擇適當的預處理方法,同時也需要不斷總結經驗,提高處理效率和精度??傊?,數據預處理是數據挖掘中的一道不可或缺的工序,只有通過正確的方式和方法,才能獲得可靠和準確的數據信息。
商務大數據的心得體會篇十一
大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什么信息時代轉變?yōu)榱舜髷祿r代?大數據時代帶給了我們什么?下面是本站小編為大家收集整理的大數據時代
心得體會
,歡迎大家閱讀。
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20xx年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統(tǒng)上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰(zhàn)栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想?!薄半S著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了?!睍袔缀蹩隙ㄒ嵏步y(tǒng)計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統(tǒng)計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統(tǒng),跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發(fā)展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統(tǒng)的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統(tǒng)計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍字節(jié)甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統(tǒng)計學了。但是由統(tǒng)計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規(guī)則。兩者似乎是做同一件事??纱髷祿摹安皇且蚬P系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規(guī)定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區(qū)別在于人有邏輯思維而機器沒有?!洞髷祿r代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現(xiàn)科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現(xiàn)在就趁早跳樓。
還好我知道自己對什么統(tǒng)計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現(xiàn)了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續(xù)寫下去,至少加一個第四部分——大數據時代的邏輯思維。
在《大數據時代》一書中,大數據時代與小數據時代的區(qū)別:1、思維慣例。大數據時代區(qū)別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區(qū)別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。3、結構。大數據更多的體現(xiàn)在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現(xiàn)實齊頭并進,理論來創(chuàng)立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯(lián)網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。
數據未來的故事。數據的發(fā)展,給我們帶來什么預期和啟示?銀行業(yè)天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰(zhàn)也隨之而來,適應變革,適者生存。我們可以有更廣闊的業(yè)務發(fā)展空間、可以有更精準的決策判斷能力、可以有更優(yōu)秀的經營管理能力??可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創(chuàng)新思維和執(zhí)行。因此,建設“數據倉庫”,培養(yǎng)“數據思維”,養(yǎng)成“數據治理”,創(chuàng)造“數據融合”,實現(xiàn)“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩(wěn)健贏取未來。
商務大數據的心得體會篇十二
這本書里主要介紹的是大數據在現(xiàn)代商業(yè)運作上的應用,以及它對現(xiàn)代商業(yè)運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現(xiàn)象入手,繼而通過對現(xiàn)象的解剖提出對這一現(xiàn)象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現(xiàn)的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20__年美國的h1n1的爆發(fā)地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發(fā)一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區(qū)間為3%,這個數字遠遠小于傳統(tǒng)統(tǒng)計學上的常規(guī)置信區(qū)間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯(lián)網終端與計算機的出現(xiàn)使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現(xiàn)過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯(lián)系google詞庫就會出現(xiàn)翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業(yè)——數據科學家,這是一群數學家、統(tǒng)計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現(xiàn)得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業(yè)部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發(fā),比如你在相關的社交網站發(fā)表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現(xiàn)了一個新的世界。
大數據心得體會篇2
商務大數據的心得體會篇十三
隨著互聯(lián)網技術的迅猛發(fā)展,大數據已經成為當今社會中不可忽視的力量之一。作為一種可以幫助人們收集、分析和利用海量數據的工具和方法,大數據的應用已經滲透到各行各業(yè)?!稕Q戰(zhàn)大數據》是一本關于大數據的暢銷書,通過講述一系列與大數據相關的故事和案例,向讀者展示了大數據的價值和威力。在閱讀這本書后,我深感大數據對于人類社會的影響和變革,同時也從中獲得了一些心得體會。
第一段:大數據引領社會變革
《決戰(zhàn)大數據》一書中,作者通過詳盡的案例和數據分析,清晰地展示了大數據對于人類社會的影響和變革。大數據的出現(xiàn)讓數據分析變得更加高效和準確,這對于企業(yè)的經營決策和市場預測起到了至關重要的作用。同時,大數據也對個人生活產生了深遠的影響,例如在購物、醫(yī)療和交通等方面。大數據技術和應用已經逐漸成為社會進步和發(fā)展的重要驅動力。
第二段:大數據帶來的機遇和挑戰(zhàn)
然而,大數據的發(fā)展也帶來了一系列的機遇和挑戰(zhàn)。大數據的廣泛應用使得信息變得更加透明和公開,使得市場更加公平和競爭更加激烈。同時,由于大量的數據會產生一定的隱私和安全問題,對于數據的保護和管理也成為了一個重要的議題。面對如此龐大的數據流,我們需要尋找更有效的方法和技術來分析和利用這些數據,并且制定相應的政策和規(guī)范來保護個人和企業(yè)的隱私權益。
第三段:大數據的潛力和創(chuàng)新
《決戰(zhàn)大數據》中的案例向我們展示了大數據的潛力和創(chuàng)新。通過對大數據的分析,企業(yè)可以更好地了解消費者的需求和喜好,從而提供更加個性化和優(yōu)質的產品和服務。同時,大數據也為新興產業(yè)的發(fā)展提供了有力的支持,例如人工智能、物聯(lián)網和區(qū)塊鏈等。這些新興技術和產業(yè)的興起,離不開對大數據的深入挖掘和應用。
第四段:大數據的發(fā)展與人的關系
盡管大數據的應用呈現(xiàn)出無限的潛力和前景,但我們不能忽視人的主觀能動性在其中的作用?!稕Q戰(zhàn)大數據》中的案例也充分說明了一個核心觀點:數據只是工具,利用數據需要人的智慧和創(chuàng)造力。在大數據時代,我們需要培養(yǎng)更多具備數據分析和創(chuàng)新意識的人才,并將數據和人才結合起來,形成更強大的創(chuàng)新引擎。
第五段:個人在大數據時代的思考與行動
閱讀《決戰(zhàn)大數據》讓我對大數據的價值和影響有了更深入的認識,同時也使我意識到個人在大數據時代的重要性。作為一個普通的個體,我們可以通過學習數據分析的知識和技巧,提升自己的競爭力和適應能力。在面對大數據帶來的挑戰(zhàn)時,我們要保護個人隱私的同時,也要主動參與到大數據的應用和發(fā)展中來。只有通過個人的思考和行動,我們才能更好地應對大數據時代帶來的挑戰(zhàn)和機遇。
總結:大數據已經滲透到我們生活的方方面面,對于個人和社會的影響愈發(fā)顯著?!稕Q戰(zhàn)大數據》通過講述大數據的故事和案例,讓我們更好地認識和理解大數據的價值和威力。在閱讀這本書后,我們應該思考大數據帶給我們的機遇和挑戰(zhàn),并積極參與到大數據的應用和發(fā)展中來,為人類社會的進步和發(fā)展貢獻自己的力量。
商務大數據的心得體會篇十四
大數據講座學習心得
大數據時代已經悄然到來,如何應對大數據時代帶來的挑戰(zhàn)與機遇,是我們當代大學生特別是我們計算機類專業(yè)的大學生的一個必須面對的嚴峻課題。大數據時代是我們的一個黃金時代,對我們的意義可以說就像是另一個“80年代”。在講座中秦永彬博士由一個電視劇《大太監(jiān)》中情節(jié)來深入淺出的簡單介紹了“大數據”的基本概念,并由“塔吉特”與“犯罪預測”兩個案例讓我們深切的體會到了“大數據”的對現(xiàn)今這樣一個信息時代的不可替代的巨大作用。
在前幾年本世紀初的時候,世界都稱本世紀為“信息世紀”。確實在計算機技術與互聯(lián)網技術的飛速發(fā)展過后,我們面臨了一個每天都可以“信息爆炸”的時代。打開電視,打開電腦,甚至是在街上打開手機、pda、平板電腦等等,你都可以接收到來自互聯(lián)網從世界各地上傳的各類信息:數據、視頻、圖片、音頻……這樣各類大量的數據累積之后達到了引起量變的臨界值,數據本身有潛在的價值,但價值比較分散;數據高速產生,需高速處理。大數據意味著包括交易和交互數據集在內的所有數據集,其規(guī)模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。遂有了“大數據”技術的應運而生。
現(xiàn)在,當數據的積累量足夠大的時候到來時,量變引起了質變?!按髷祿蓖ㄟ^對海量數據有針對性的分析,賦予了互聯(lián)網“智商”,這使得互聯(lián)網的作用,從簡單的數據交流和信息傳遞,上升到基于海量數據的分析,一句話“他開始思考了”。簡言之,大數據就是將碎片化的海量數據在一定的時間內完成篩選、分析,并整理成為有用的資訊,幫助用戶完成決策。借助大數據企業(yè)的決策者可以迅速感知市場需求變化,從而促使他們作出對企業(yè)更有利的決策,使得這些企業(yè)擁有更強的創(chuàng)新力和競爭力。這是繼云計算、物聯(lián)網之后it產業(yè)又一次顛覆性的技術變革,對國家治理模式、對企業(yè)的決策、組織和業(yè)務流程、對個人生活方式都將產生巨大的影響。后工業(yè)社會時代,隨著新興技術的發(fā)展與互聯(lián)網底層技術的革新,數據正在呈指數級增長,所有數據的產生形式,都是數字化。如何收集、管理和分析海量數據對于企業(yè)從事的一切商業(yè)活動都顯得尤為重要。大數據時代是信息化社會發(fā)展必然趨勢,我們只有緊緊跟隨時代發(fā)展的潮流,在技術上、制度上、價值觀念上做出迅速調整并牢牢跟進,才能在接下來新一輪的競爭中擺脫受制于人的弱勢境地,才能把握發(fā)展的方向。
首先,“大數據”究竟是什么?它有什么用?這是當下每個人初接觸“大數據”都會有的疑問,而這些疑問在秦博士的講座中我們都了解到了?!按髷祿钡摹按蟆辈粌H是單單純純指數量上的“大”,而是在諸多方面上闡釋了“大”的含義,是體現(xiàn)在數據信息是海量信息,且在動態(tài)變化和不斷增長之上。同時“大數據”在:速度(velocity)、多樣性(variety)、價值密度(value)、體量(volume)這四方面(4v)都有體現(xiàn)。其實“大數據”歸根結底還是數據,其是一種泛化的數據描述形式,有別于以往對于數據信息的表達,大數據更多地傾向于表達網絡用戶信息、新聞信息、銀行數據信息、社交媒體上的數據信息、購物網站上的用戶數據信息、規(guī)模超過tb級的數據信息等。
一、學習總結
1. 大數據的定義
采用某些技術,從技術中獲得洞察力,也就是bi或者分析,通過分析和優(yōu)化實現(xiàn)
對企業(yè)未來運營的預測。
二、心得體會
在如此快速的到來的大數據革命時代,我們還有很多知識需要學習,許多思維需要轉變,許多技術需要研究。職業(yè)規(guī)劃中,也需充分考慮到大數據對于自身職業(yè)的未來發(fā)展所帶來的機遇和挑戰(zhàn)。當我們掌握大量數據,需要考慮有多少數字化的數據,又有哪些可以通過大數據的分析處理而帶來有價值的用途?在大數據時代制勝的良藥也許是創(chuàng)新的點子,也許可以利用外部的數據,通過多維化、多層面的分析給我們日后創(chuàng)業(yè)帶來價值。借力,順勢,合作共贏。
一、什么是大數據?
百度百科中是這么解釋的:大數據(big data),指無法在可承受的時間范圍內用常規(guī)軟件工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應海量、高增長率和多樣化的信息資產。我最開始了解大數據是從《大數據時代》了解到的。
大數據在幾年特別火爆,不知道是不是以前沒關注的原因,從各種渠道了解了大數據以后,就決定開始學習了。
二、開始學習之旅
在科多大數據學習這段時間,覺得時間過的很快,講課的老師,是國家大數據標準制定專家組成員,也是一家企業(yè)的大數據架構師,老師上課忒耐心,上課方式也很好,經常給我們講一些項目中的感受和經驗,果然面對面上課效果好!
如果有問題,老師會一直講到你懂,這點必須贊。上課時間有限,我在休息時間也利用他們的仿真實操系統(tǒng)不斷的練習,剛開始確實有些迷糊,覺得很難學,到后來慢慢就入門了,學習起來就容易多了,堅持練習,最重要的就是堅持。
商務大數據的心得體會篇十五
近年來,隨著信息技術的迅猛發(fā)展,大數據已逐漸成為人們生活中的一個熱門話題。而《大數據》這本書,作為一部關于大數據的權威著作,讓我對大數據有了更深入的認識與理解。通過閱讀這本書,我不僅對大數據的概念有了一定的了解,更發(fā)現(xiàn)了大數據在各個領域中的應用與挑戰(zhàn),并對個人隱私保護等問題產生了思考。
首先,本書對大數據的概念進行了詳盡的闡述。大數據并不只是指數量龐大的數據,更重要的是指利用這些數據進行分析、挖掘和應用的過程。這本書通過實際案例和統(tǒng)計數據,將數據的價值和潛力展示給讀者。它告訴我們,大數據的處理能力和分析能力將會顯著地提升人類社會的效率和智能化水平。
其次,本書探討了大數據在各個領域中的應用與挑戰(zhàn)。在商業(yè)領域,大數據的應用已經為企業(yè)帶來了更多的商機和競爭優(yōu)勢。通過分析消費者的購買記錄、興趣愛好以及社交媒體的內容,企業(yè)能夠更準確地把握用戶的需求,為用戶提供個性化的服務。然而,由于大數據的處理涉及到海量的數據、復雜的算法以及龐大的計算能力,公司需要具備相關技能和資源才能有效地利用大數據。在政府領域,大數據也能夠幫助政府提供更高效的公共服務,更好地理解民眾的需求。然而,大數據的應用也引發(fā)了隱私保護和數據安全等問題,需要政府制定相關法律法規(guī)來保護個人隱私和數據安全。
再次,本書對大數據對個人隱私保護的問題進行了探討。隨著大數據的發(fā)展,人們的個人信息被不斷收集、分析和應用,我們的隱私已經受到了嚴重的侵犯。而大數據的應用具有隱私泄露的潛在風險,人們需要保護自己的個人隱私。為了解決這一問題,政府和企業(yè)需要共同努力,加強信息安全和隱私保護的技術手段。同時,人們也應該提高自己的信息安全意識,合理使用網絡和社交媒體,避免個人信息的泄露。
最后,本書還介紹了大數據對社會的影響。大數據的廣泛應用,改變了人們的生活方式和工作方式。我們的社會變得更加數字化、智能化。例如,在醫(yī)療領域,大數據的應用使得醫(yī)生可以更準確地進行病情診斷和治療方案選擇。在城市規(guī)劃方面,大數據的應用使城市更加智能化,提高了公共交通的運營效率和人們的生活質量。然而,大數據的應用也帶來了一些問題,如信息不對稱和社會不平等等。對于這些問題,我們需要進一步研究和探索,以找到解決之道。
綜上所述,《大數據》這本書給我留下了深刻的印象。通過閱讀這本書,我對大數據有了更深入的認識與理解,了解到了大數據的概念、應用與挑戰(zhàn),并開始思考大數據對于個人隱私保護和社會的影響。我相信,隨著大數據技術的不斷發(fā)展,大數據將進一步改變我們的生活和工作方式,為我們帶來更多的便利和創(chuàng)新。我們需要不斷學習和探索,以適應這個數字化時代的要求。
商務大數據的心得體會篇十六
數據挖掘作為一項重要的技術手段,在商務領域的應用日益廣泛。作為一名從事市場營銷的專業(yè)人士,我有幸參與了公司商務數據挖掘的實踐工作,并從中獲得了一些寶貴的心得體會。在這篇文章中,我將分享我對商務數據挖掘的理解和應用,希望能對相關從業(yè)人員有所幫助。
首先,商務數據挖掘不僅僅是簡單地分析數據,更重要的是從海量數據中挖掘出有價值的信息。在實踐中,我們常常遇到這樣的情況:大量的銷售數據中蘊藏著許多規(guī)律性的信息,但這些信息經常隱藏在瑣碎的數據之中。因此,我們需要借助數據挖掘的技術手段,提取并分析這些信息,以便更好地指導商務決策和市場營銷策略的制定。
其次,數據挖掘需要結合業(yè)務需求和專業(yè)知識,才能發(fā)揮出最大的價值。在實際工作中,最令人印象深刻的案例就是我們利用數據挖掘技術,對市場競爭對手的銷售數據進行分析,進而了解他們的銷售策略和競爭優(yōu)勢。然而,簡單的數據分析是遠遠不夠的,我們還需要深入了解行業(yè)動態(tài)、市場趨勢和消費者需求,結合個別企業(yè)的特殊情況,才能作出有針對性的分析和決策。
再次,數據挖掘需要跨部門合作,才能取得更好的效果。商務數據的來源和處理過程十分復雜,需要涉及到多個部門和崗位的合作。在過去的實踐中,我發(fā)現(xiàn)只有與IT、市場、銷售等環(huán)節(jié)的同事緊密配合,才能保證數據的準確性和全面性。同時,緊密的合作還可以實現(xiàn)數據共享和交流,從而更好地發(fā)掘數據中的價值。因此,建立良好的跨部門合作機制是進行商務數據挖掘的前提條件。
最后,商務數據挖掘是一個持續(xù)性的工作,需要不斷更新和完善。商務環(huán)境和市場需求變化快速,因此,僅僅一次的數據挖掘分析是遠遠不夠的。我們需要建立定期的數據收集和分析機制,及時捕捉市場變化的信號,并對公司的商務策略進行調整。此外,新技術的應用也要求我們不斷學習和更新知識,以適應商務數據挖掘的需求。
綜上所述,商務數據挖掘是一項重要的工作,對于公司的發(fā)展和市場競爭具有重要意義。在實踐中,我們需要充分挖掘數據中蘊藏的信息價值,結合業(yè)務需求和專業(yè)知識,跨部門合作,不斷更新和完善分析結果。我相信,隨著數據挖掘技術的不斷發(fā)展和應用,商務數據挖掘將在商界發(fā)揮出更大的作用,為企業(yè)帶來更多商機和競爭優(yōu)勢。
商務大數據的心得體會篇十七
隨著信息技術的快速發(fā)展,大數據已經成為了當代社會最為炙手可熱的話題之一。作為信息時代的產物,大數據給我們的生活帶來了巨大的改變。最近,我讀了一本名為《大數據》的書,在閱讀過程中,讓我對大數據有了更深的認識。下面我將與大家分享一下我的體會。
首先,大數據讓我們的生活更加便利?,F(xiàn)如今,大數據技術得到了廣泛的應用,人們可以通過各種技術手段輕松地獲取所需的信息。無論是購物、出行還是旅游,我們都能夠通過大數據獲取到最新的產品信息、路線規(guī)劃以及景點推薦,從而為我們的生活提供了諸多便利。比如,每當我需要購買產品時,只需在電子商務平臺上輸入關鍵詞,便可獲得大量的搜索結果,同時還能通過查看其他用戶的評價來進行篩選,這使得我們能夠更加輕松地做出購買決策。
其次,大數據為商業(yè)發(fā)展提供了新的機遇。隨著大數據技術的不斷改進,越來越多的企業(yè)開始使用大數據分析手段來處理海量的數據,從而找到市場的空白點,為企業(yè)創(chuàng)造更多商機。例如,通過對大數據的分析,電商平臺能夠通過用戶的購買行為了解用戶的興趣愛好,并根據這些數據進行精確的產品定位和個性化推薦,從而提高銷售額。大數據的出現(xiàn),使得商業(yè)發(fā)展更加精準和高效,企業(yè)可以更加了解消費者的需求,提供更好的產品和服務。
再次,大數據為決策提供了科學依據。無論是政府還是企事業(yè)單位,在制訂政策和規(guī)劃發(fā)展戰(zhàn)略時,都需要基于大量的數據進行決策。大數據的出現(xiàn)讓決策者可以更加客觀地了解社會經濟現(xiàn)狀,分析各種數據之間的關系以及相關因素對決策結果的影響,從而做出更加明智的決策。比如,在交通規(guī)劃方面,利用大數據可以實時監(jiān)測交通擁堵情況,分析交通流量以及不同道路之間的關系,從而優(yōu)化交通路線,提高交通效率。大數據的運用,為決策者提供了更準確的信息,幫助他們做出科學合理的決策。
最后,大數據也帶來了一系列的挑戰(zhàn)和問題。首先,數據安全問題成為了一個亟待解決的難題。大數據的存儲和傳輸需要龐大的計算資源,但與此同時,也給數據安全帶來了巨大的挑戰(zhàn)。隨著黑客技術的不斷發(fā)展,數據泄露和隱私侵犯的風險也在逐漸增加。其次,大數據的過濾和分析需要高度專業(yè)的技術和人才。大量的數據對于普通人來說是一種負擔和困擾,如果沒有足夠的專業(yè)人才來進行數據的處理和分析,那將影響到大數據的應用和發(fā)展。
總而言之,大數據給我們的生活和社會帶來了諸多的變化和好處,但也面臨著一些挑戰(zhàn)和問題。我認為,我們應該在充分利用大數據的優(yōu)勢的同時,加強數據安全的保護和專業(yè)人才的培養(yǎng)。只有這樣,我們才能更好地應對大數據時代的挑戰(zhàn)和機遇,并為我們的生活和社會發(fā)展創(chuàng)造更加美好的未來。
商務大數據的心得體會篇十八
大數據時代的到來,給人們的學習和生活帶來了巨大的變革。近期,我讀完了一本關于大數據的書籍《大數據》,在書中我了解到了大數據的定義、特點、應用和對社會產生的影響。通過這本書的學習,我深刻認識到了大數據對于現(xiàn)代社會的重要性,并從中汲取了一些啟示和體會。
首先,我的第一個體會是對大數據的新認識。在書中,大數據被定義為指數據量巨大、處理難度大,無法通過傳統(tǒng)的數據處理工具和方法進行處理和分析的數據。大數據的特點主要包括“四V”,即數據量大(Volume)、處理速度快(Velocity)、數據種類繁多(Variety)和價值密度低(Value)。通過學習這些概念,我意識到了大數據處理的復雜性和重要性。在現(xiàn)代社會中,隨著互聯(lián)網技術的快速發(fā)展,海量的數據正在不斷產生,而利用這些數據尋找規(guī)律、洞察趨勢對于企業(yè)和科學研究等領域都具有重要意義。
其次,我通過閱讀《大數據》這本書,對大數據應用的廣泛性有了更深入的了解。大數據不僅可以被用于商業(yè)領域的市場調研和用戶行為分析,還可以被運用于醫(yī)療、金融、政府等各個領域。例如,在醫(yī)療領域,大數據分析可以幫助醫(yī)生更準確地診斷疾病,提高治療效果;在金融領域,大數據可以用于風險評估和投資策略制定。這些例子讓我認識到大數據不僅僅是一個概念,它已經深入到我們的生活和工作中,并對各個領域產生了重要的影響。
第三,大數據在社會中的影響力也讓我深受觸動。通過大數據的分析,科學家們可以預測自然災害的發(fā)生和規(guī)模,幫助人們采取相應的措施減少災害造成的損失;政府們可以利用大數據分析來改進公共服務和決策,提高社會治理效能。大數據還可以通過對人群行為的分析,為企業(yè)提供精準的廣告定位和銷售策略,幫助企業(yè)提高競爭力。大數據的應用正引領著社會的進步和發(fā)展,讓我感到對于大數據的學習和掌握變得格外重要。
第四,在書中我還學到了大數據的應對方法和技術。大數據處理的復雜性要求我們運用先進的技術和工具。例如,云計算能夠提供強大的計算和存儲能力,幫助我們處理海量的數據;機器學習和人工智能則能夠幫助我們從復雜的數據中提取有價值的信息。了解到這些技術后,我決定在大數據領域繼續(xù)深入學習,提高自己的技術水平。
最后,通過讀完《大數據》,我深刻體會到大數據的革命性和不可逆轉性。大數據已經成為了當今社會的一個重要標志,影響著我們生活的各個方面。不僅是企業(yè)和科研機構,普通人也需要掌握一定的大數據分析和處理能力,才能適應這個快速變化的時代。因此,在日常生活中,我們要提高自己對于大數據的認識和運用,并不斷學習相關的知識和技能。
總之,通過閱讀《大數據》,我對大數據有了全新的認識,了解到了其廣泛的應用領域和對社會的重要影響。同時,我也學到了一些大數據的應對方法和技術。大數據已經成為一個時代的產物,對于每個人來說,掌握大數據的知識和技能變得愈發(fā)重要。我希望通過自己的努力,能夠在大數據時代中不斷學習和成長,為社會的發(fā)展貢獻自己的力量。
商務大數據的心得體會篇十九
數據挖掘是一種通過探索和分析海量數據,提取出有用的信息和知識的過程。在商務領域中,數據挖掘的應用已經越來越重要。通過深入學習和實踐,我獲得了一些關于商務數據挖掘的心得和體會。
首先,商務數據挖掘的背后是數據質量的保證。數據的質量直接影響到數據挖掘的效果。因此,在進行商務數據挖掘之前,我們應該首先對數據進行清洗和預處理。清洗數據是為了去除重復、缺失或錯誤的數據,從而提高數據的準確性和完整性。預處理數據則是對數據進行特征選擇、規(guī)范化和歸一化等處理,以便更好地應用數據挖掘算法。只有經過充分的數據清洗和預處理,我們才能得到準確和可靠的挖掘結果。
其次,合適的數據挖掘算法是取得好的效果的關鍵。商務數據挖掘應用廣泛,包括關聯(lián)規(guī)則挖掘、聚類分析、預測建模等。不同的問題需要采用不同的數據挖掘算法。例如,我們可以使用關聯(lián)規(guī)則挖掘算法找到不同產品之間的關聯(lián)性,以便設計更好的銷售策略;聚類分析可以幫助我們將客戶劃分成不同的群體,以便精準營銷;而預測建??梢詭椭覀冾A測市場需求和銷售額。選擇合適的數據挖掘算法是非常重要的,它可以提高商務決策的準確性和效率。
另外,數據可視化在商務數據挖掘中的作用不可忽視。數據可視化可以將海量的數據以圖表、圖像和動畫的形式展現(xiàn)出來,使得復雜的數據更加直觀和易懂。通過數據可視化,我們可以更好地發(fā)現(xiàn)數據的規(guī)律和趨勢,從而作出更明智的商務決策。例如,通過繪制產品銷售地域分布圖,我們可以更清晰地了解產品的市場覆蓋情況;通過繪制用戶購買路徑圖,我們可以更好地分析用戶行為并優(yōu)化用戶體驗。因此,在商務數據挖掘中,我們應該注重數據的可視化,將數據轉化為有意義的圖形化信息。
最后,數據挖掘的應用是一個持續(xù)不斷的過程。商務領域的數據變化非??焖伲袌鲂枨蟮淖兓埠苎杆?。因此,我們不能僅僅停留在一次性的數據挖掘分析中,而應該持續(xù)地進行數據挖掘和分析工作。通過不斷地監(jiān)測和分析數據,我們可以及時發(fā)現(xiàn)和預測市場的變化和趨勢,從而及時作出相應的調整和決策。數據挖掘的應用是一個循環(huán)的過程,需要不斷地進行數據收集、清洗、預處理、模型構建、結果評估等環(huán)節(jié),以實現(xiàn)商務數據挖掘的持續(xù)應用和價值。
綜上所述,商務數據挖掘是一項非常重要的工作。通過數據挖掘,我們可以從海量的數據中提取出有用的信息和知識,幫助企業(yè)進行商務決策和市場預測。然而,商務數據挖掘也面臨著挑戰(zhàn),如數據質量的保證、合適的算法的選擇、數據可視化的應用和持續(xù)不斷的工作。只有加強這些方面的工作,我們才能取得更好的商務數據挖掘效果,并為企業(yè)帶來更大的商業(yè)價值。

