2023年高一數學課教案(優(yōu)質18篇)

字號:

    通過編寫教案,可以更好地組織課堂教學,提高教學效果。關注學生的學習情況和心理健康,為學生提供良好的學習環(huán)境和支持。這份教案注重了學生的實際操作和參與,促進了學生的實踐能力的培養(yǎng)。
    高一數學課教案篇一
    拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數。
    二、確定每部分的答題時間。
    1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
    2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
    三、碰到難題時。
    1、你可以先用“直覺”最快的找到解題思路;。
    2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
    3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
    4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
    四、卷面整潔、字跡清楚、注意小節(jié)。
    做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
    高一數學課教案篇二
    1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
    2、掌握標準方程中的幾何意義
    3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
    3、雙曲線的漸進線方程為、
    4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
    探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關系、
    練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
    例1根據以下條件,分別求出雙曲線的標準方程、
    (1)過點,離心率、
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
    例3(理)求離心率為,且過點的雙曲線標準方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    高一數學課教案篇三
    掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
    向量的性質及相關知識的綜合應用。
    (一)主要知識:
    1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略。
    四、小結:
    1、進一步熟練有關向量的運算和證明;能運用解三角形的`知識解決有關應用問題,
    2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。
    高一數學課教案篇四
    學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
    教學目標。
    1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
    (1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的。
    (2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
    (3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項。
    2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
    3、通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣。
    教學建議。
    (1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
    (2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
    (3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
    (4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
    (5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
    (6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
    上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
    高一數學課教案篇五
    (1)通過實物操作,增強學生的直觀感知。
    (2)能根據幾何結構特征對空間物體進行分類。
    (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
    (4)會表示有關于幾何體以及柱、錐、臺的分類。
    (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
    (2)讓學生觀察、討論、歸納、概括所學的知識。
    (1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
    (2)培養(yǎng)學生的空間想象能力和抽象括能力。
    重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。 難點:柱、錐、臺、球的結構特征的概括。
    (1)學法:觀察、思考、交流、討論、概括。
    (2)實物模型、投影儀 四、教學思路
    1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
    2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
    1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
    3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。
    (1)有兩個面互相平行;
    (2)其余各面都是平行四邊形;
    (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
    5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?
    6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
    7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
    8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
    9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
    1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
    2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
    3、課本p8,習題1.1 a組第1題。
    5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
    由學生整理學習了哪些內容 六、布置作業(yè)
    課本p8 練習題1.1 b組第1題
    課外練習 課本p8 習題1.1 b組第2題
    高一數學課教案篇六
    1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
    (1)理解數列是按一定順序排成的一列數,其每一項是由其項數確定的。
    (2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
    (3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的`前幾項。
    2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
    3、通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣。
    (1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
    (2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
    (3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
    (4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
    (5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
    (6)給出一些簡單數列的通項公式,可以求其項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
    高一數學課教案篇七
    :
    設計
    .
    突出重點.培養(yǎng)能力.
    三、課堂練習
    教材第13頁練習1、2、3、4.
    【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
    凡有陰影部分即為所求.
    四、小結
    提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
    五、作業(yè)
    習題1至8.
    筆練結合板書.
    傾聽.修改練習.掌握方法.
    觀察.思考.傾聽.理解.記憶.
    傾聽.理解.記憶.
    回憶、再現內容.
    落實
    介紹解題技能技巧.
    內容條理化.
    課堂教學設計說明
    2.反演律可根據學生實際酌情使用.
    高一數學課教案篇八
    1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系。
    2、了解集合的運算包含了集合表示法之間的轉化及數學解題的`一般思想。
    3、了解集合元素個數問題的討論說明。
    通過提問匯總練習提煉的形式來發(fā)掘學生學習方法。
    培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維。
    [教學重點、難點]:會正確應用其概念和性質做題[教具]:多媒體、實物投影儀。
    [教學方法]:講練結合法。
    [授課類型]:復習課。
    [課時安排]:1課時。
    [教學過程]:集合部分匯總。
    本單元主要介紹了以下三個問題:
    1,集合的含義與特征。
    2,集合的表示與轉化。
    3,集合的基本運算。
    一,集合的含義與表示(含分類)。
    1,具有共同特征的對象的全體,稱一個集合。
    2,集合按元素的個數分為:有限集和無窮集兩類。
    高一數學課教案篇九
    教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
    教學過程:
    一、閱讀下列語句:
    1)全體自然數0,1,2,3,4,5,
    2)代數式.
    3)拋物線上所有的點
    4)今年本校高一(1)(或(2))班的全體學生
    5)本校實驗室的所有天平
    6)本班級全體高個子同學
    7)著名的科學家
    上述每組語句所描述的對象是否是確定的?
    二、1)集合:
    2)集合的元素:
    3)集合按元素的個數分,可分為1)__________2)_________
    三、集合中元素的'三個性質:
    四、元素與集合的關系:1)____________2)____________
    五、特殊數集專用記號:
    4)有理數集______5)實數集_____6)空集____
    六、集合的表示方法:
    1)
    2)
    3)
    七、例題講解:
    例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
    a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
    例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
    1)地球上的四大洋構成的集合;
    2)函數的全體值的集合;
    3)函數的全體自變量的集合;
    4)方程組解的集合;
    5)方程解的集合;
    6)不等式的解的集合;
    7)所有大于0且小于10的奇數組成的集合;
    8)所有正偶數組成的集合;
    例3、用符號或填空:
    1)______q,0_____n,_____z,0_____
    2)______,_____
    3)3_____,
    4)設,,則
    例4、用列舉法表示下列集合;
    1.
    2.
    3.
    4.
    例5、用描述法表示下列集合
    1.所有被3整除的數
    2.圖中陰影部分點(含邊界)的坐標的集合
    課堂練習:
    例7、已知:,若中元素至多只有一個,求的取值范圍。
    思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
    小結:
    作業(yè)班級姓名學號
    1.下列集合中,表示同一個集合的是()
    a.m=,n=b.m=,n=
    c.m=,n=d.m=,n=
    2.m=,x=,y=,,.則()
    a.b.c.d.
    3.方程組的解集是____________________.
    4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
    5.設集合a=,b=,
    c=,d=,e=。
    其中有限集的個數是____________.
    6.設,則集合中所有元素的和為
    7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
    8.已知f(x)=x2-ax+b,(a,br),a=,b=,
    若a=,試用列舉法表示集合b=
    9.把下列集合用另一種方法表示出來:
    (1)(2)
    (3)(4)
    10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
    11.已知集合a=
    (1)若a中只有一個元素,求a的值,并求出這個元素;
    (2)若a中至多只有一個元素,求a的取值集合。
    12.若-3,求實數a的值。
    【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
    高一數學課教案篇十
    2、掌握標準方程中的幾何意義。
    3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
    3、雙曲線的漸進線方程為、
    探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關系、
    練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
    例1根據以下條件,分別求出雙曲線的標準方程、
    (1)過點,離心率、
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
    例3(理)求離心率為,且過點的雙曲線標準方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
    高一數學課教案篇十一
    一、準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題
    概念抽象、符號術語多是集合單元的一個顯著特點,例如交集、并集、補集的概念及其表示方法,集合與元素的關系及其表示方法,集合與集合的關系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關系和表示方法,都可以作為求解集合問題的依據、出發(fā)點甚至是突破口。因此,要想學好集合的內容,就必須在準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題上下功夫。
    二、注意弄清集合元素的性質,學會運用元素分析法審視集合的有關問題
    眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:
    (1)、確定性:集合中的元素應該是確定的,不能模棱兩可。
    (2)、互異性:集合中的元素應該是互不相同的,相同的元素在集合中只能算作一個。
    (3)、無序性:集合中的元素是無次序關系的。
    集合的關系、集合的運算等等都是從元素的角度予以定義的。因此,求解集合問題時,抓住元素的特征進行分析,就相當于牽牛抓住了牛鼻子。
    三、體會集合問題中蘊含的數學思想方法,掌握解決集合問題的基本規(guī)律
    布魯納說過,掌握數學思想可使得數學更容易理解和記憶,領會數學思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數學思想內容,例如數形結合的思想、分類討論的思想、等價轉化的思想、正難則反的思想等等,顯得十分活躍。在學習過程中,注意對這些數學思想進行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識,駕馭集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質,都具有十分重要的意義。
    四、重視空集的特殊性,防止由于忽視空集這一特殊情況導致的解題失誤
    空集是一個十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時刻注意有無可能存在空集的情況,否則極易導致解題失誤。這一點,必須引起我們的高度重視。
    高一數學習數學的技巧
    一、轉變觀念,化被動學習為主動學習
    初中階段,特別是初中三年級,老師會通過大量的練習,學生自己也會查找很多資料,這樣就會把自己的數學成績得到明顯的提高,這樣的學習方式是一種被動式的學習也叫題海戰(zhàn)術,學生只是簡單的接受數學知識,并且初中數學的知識相對比較淺顯,學生很快就能掌握知識??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術是能提高一些對數學知識的掌握,可是對于這個知識中的為什么就不能說出其所以然,就不能對相關的知識進行創(chuàng)新。所以高中數學的學習不只是單純的做題就可以掌握其知識,而是要弄得其所以然才行,這樣就需要學生自己去主動發(fā)掘知識的內涵,在老師的指導下把數學知識進行擴展,達到觸類旁通。要做到這樣就需要學生本身更加主動的學習,這樣才能更加的發(fā)現數學中的樂趣。
    二、學會聽課,盡可能掌握更多的知識
    數學的學習是需要老師的引導,在引導下,學生根據自己的情況做一些相應的練習來掌握知識,鞏固知識,要想提高學習效率,就需要學生做到以下一些:
    1、做好預習,提出問題,進行多次閱讀課本,查閱相關資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識,如果不能回答的問題可以在老師講課中去解決。
    2、學會聽課,在初中的教學中老師經常會把一個知識點進行多次的講解和通過大量的練習讓學生去掌握,可是到高中以后,老師對于一個知識點就不會再通過大量的練習來讓學生去掌握,而是通過一些相關知識的講解去引導學生明白這個知識是怎么來的,又如何用這個知識解答一些相關的疑惑,如果學生能明白的話就能在自己的知識下通過課后的練習去鞏固這些知識,同時學生也可以根據老師的引導去擴展知識。
    當然,對于自己在聽課過程中一下子不能明白的知識,可以通過舉手讓老師再進行一次分析講解,也同時做好相關的記錄,以備在課后去進一步弄明白;對于自己在預習中提出的問題,如果老師沒有解決的話,可以利用課余時間請教老師解答,這樣學習就可能學習到更多的知識。
    3、敢于發(fā)表自己的想法,在高中數學學習中,學生會遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學學習的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學生學習的效率也是很低的。
    4、聽好每一分鐘,尤其是老師講課的開頭和結束
    老師講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結尾常常是對一節(jié)課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節(jié)知識方法的綱要。
    三、課后鞏固
    很多學生在學習過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識就夠了,其實這是錯誤的。高中數學的知識很多,并且不像初中數學那么淺顯,而是有很多的內涵,如果不能進一步挖掘其內涵,那么只是掌握這個知識的表面,于是在自己做練習時就不知道如何去解了,也不能運用這個知識的。
    做練習是需要的,可是有些學生只是為了練習去做練習,而不是為了鞏固這個知識,擴展這個知識去做練習,經常是做完這個練習后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實,我們還應該把這個練習中使用到的知識串起來,這樣我們就能明白那些知識在運用,也能掌握更多的知識。也同樣能發(fā)現那個知識點是重點,也能發(fā)現難題是如何把相關知識串起來的。
    四、學會看題、學會選做題
    高中的相關資料比初中更多,高考是全社會都關注的問題,所以高中的練習也特別多,有些學生買的資料也多,于是如何利用題目來掌握我們學習的知識,擴展我們學習的知識就成為學習的關鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會有選擇的做題,達到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現那些是這段時間數學學習的重點知識,那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
    五、重視每一次測試,認真分析考試中丟分的原因,并對丟分的地方做出相關的措施。
    數學的學習技巧有很多,每一個人都有自己的不同技巧,我自己根據自己讀書時期的一些體會和現在教學過程中的體會,歸納出幾點技巧與大家共勉。
    高一理數數學記筆記的方法
    一記內容提綱
    老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
    二記疑難問題
    將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
    三記思路方法
    對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
    四記歸納總結
    注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
    五記體會感受
    數學學習是智、情、意、行的綜合。數學學習過程伴隨著積極的情感體驗、意志體驗過程,記下自己學習過程的感受,可以用來更好地調控自己的學習行為。譬如,一道運算很繁雜的習題,依靠堅強的意志獲得解題成功后,可在旁邊寫上“功夫不負有心人”等自勉的語句,用來激勵自己。
    六記錯誤反思
    學習過程中不可避免地會犯這樣或那樣的錯誤,“聰明人不犯或少犯相同的錯誤”,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    高一數學課教案篇十二
    對數函數(第二課時)是20__人教版高一數學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數函數相關知識,分三個課時,這里是第二課時復習鞏固對數函數圖像及性質,并用此解決三類對數比大小問題,是對已學內容(指數函數、指數比大小、對數函數)的延續(xù)和發(fā)展,同時也體現了數學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用。
    二、教學目標。
    根據教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:
    學習目標:
    1、復習鞏固對數函數的圖像及性質。
    2、運用對數函數的性質比較兩個數的大小。
    能力目標:
    1、培養(yǎng)學生運用圖形解決問題的意識即數形結合能力。
    2、學生運用已學知識,已有經驗解決新問題的能力。
    3、探索出方法,有條理闡述自己觀點的能力。
    德育目標:
    培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質。
    三、教材的重點及難點。
    教學中將在以下2個環(huán)節(jié)中突出教學重點:
    1、利用學生預習后的心得交流,資源共享,互補不足。
    2、通過適當的練習,加強對解題方法的掌握及原理的理解。
    教學中會在以下3個方面突破教學難點:
    1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
    2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    四、學生學情分析。
    長處:高一學生經過幾年的數學學習,已具備一定的數學素養(yǎng),對于已學知識或用過的數學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數函數的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數學能力上說,指數比大小問題的解題思想和方法在這可借鑒,另外數形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
    學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
    五、教法特點。
    新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    六、教學過程分析。
    1、課件展示本節(jié)課學習目標。
    設計意圖:明確任務,激發(fā)興趣。
    2、溫故知新(已填表形式復習對數函數的圖像和性質)。
    設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
    3、預習后心得交流。
    1)同底對數比大小。
    2)既不同底數,也不同真數的對數比大小。
    設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。
    4、合作探究——同真異底型的對數比大小。
    以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數的大小關系探究出不同底對數函數在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
    設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現“授之以魚,不如授之以漁”的教學理念。另外數學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數”。
    5、小結。
    6、思考題。
    以20__高考題為例,讓學生學以致用,增強數學學習興趣。
    7、作業(yè)。
    包括兩個方面:
    1、書寫作業(yè)。
    2、下節(jié)課前的預習作業(yè)。
    通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當的提示,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數學思想、數學方法的小結內容,使這些數學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
    高一數學課教案篇十三
    1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
    (1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念.
    (2)能從數和形兩個角度認識單調性和奇偶性.
    (3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
    2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
    3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度.
    (1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
    (2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
    (1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
    (2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
    (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
    (2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.
    函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
    高一數學課教案篇十四
    (2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;
    (3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;
    (4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;
    (5)會用真值表判斷相應的復合命題的真假;
    (6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.。
    重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.。
    1.新課導入。
    初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)。
    學生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學議論結果,答案是肯定的.)。
    教師提問:什么是命題?
    (學生進行回憶、思考.)。
    概念總結:對一件事情作出了判斷的語句叫做命題.。
    (教師肯定了同學的回答,并作板書.)。
    (教師利用投影片,和學生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    2.講授新課。
    (片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.。
    (2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.。
    命題可分為簡單命題和復合命題.。
    (4)命題的表示:用p,q,r,s,……來表示.。
    (教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)。
    對于給出“若p則q”形式的復合命題,應能找到條件p和結論q.。
    3.鞏固新課。
    (1)5;
    (2)0.5非整數;
    (3)內錯角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若ab=0,則a=0.。
    (讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)。
    高一數學課教案篇十五
    (4)掌握并能初步運用公式一;
    (5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數。
    初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義。根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數。講解例題,總結方法,鞏固練習。
    任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解。
    本節(jié)利用單位圓上點的坐標定義任意角的正弦函數、余弦函數。這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系。
    教學重難點。
    重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
    難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解。
    高一數學課教案篇十六
    把實物圓柱放在講臺上讓學生畫。
    2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內容。
    (二)研探新知。
    1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
    畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
    練習反饋。
    根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
    2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
    教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
    教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
    3.探求空間幾何體的直觀圖的畫法。
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖。
    請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
    4.平行投影與中心投影。
    投影出示課本p23圖,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
    5.鞏固練習,課本p25練習1,2,3。
    三、歸納整理。
    學生回顧斜二測畫法的關鍵與步驟。
    四、作業(yè)。
    1.書畫作業(yè),課本p25習題1—3a組和b組。
    高一數學課教案篇十七
    復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
    方法規(guī)律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。
    一、基礎訓練。
    a、511b、512c、1023d、1024。
    2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為。
    a、b、
    c、d、
    二、典型例題。
    例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數。
    高一數學課教案篇十八
    重難點分析
    本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
    本節(jié)的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
    教法建議
    1.性質的引入方法很多,以下2種比較常用:
    (1)設計問題引導啟發(fā):由設計的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導學生猜想出
    (2)從算術平方根的意義引入.
    2.性質的鞏固有兩個方面需要注意:
    (1)注意與性質進行對比,可出幾道類型不同的題進行比較;
    (2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
    (第1課時)
    1.掌握二次根式的性質
    2.能夠利用二次根式的性質化簡二次根式
    3.通過本節(jié)的學習滲透分類討論的數學思想和方法
    對比、歸納、總結
    1.重點:理解并掌握二次根式的性質
    2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
    1課時
    五、教b具學具準備
    投影儀、膠片、多媒體
    復習對比,歸納整理,應用提高,以學生活動為主
    一、導入新課
    我們知道,式子()表示非負數的算術平方根.
    問:式子的意義是什么?被開方數中的表示的是什么數?
    答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
    二、新課
    計算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數的冪的底數都是什么數?
    2.各小題的結果和相應的被開方數的冪的底數有什么關系?
    3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.