高一數學課教案(精選18篇)

字號:

    教案是教師在備課過程中進行教學準備的重要依據,它對于提高教學質量和效果具有重要作用。教案的編寫需要教師充分考慮學生的學習特點和學科知識的體系結構。教案的編寫應考慮到學生的實際學習水平和能力。
    高一數學課教案篇一
    教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
    教學過程:
    一、閱讀下列語句:
    1)全體自然數0,1,2,3,4,5,
    2)代數式.
    3)拋物線上所有的點
    4)今年本校高一(1)(或(2))班的全體學生
    5)本校實驗室的所有天平
    6)本班級全體高個子同學
    7)著名的科學家
    上述每組語句所描述的對象是否是確定的?
    二、1)集合:
    2)集合的元素:
    3)集合按元素的個數分,可分為1)__________2)_________
    三、集合中元素的'三個性質:
    四、元素與集合的關系:1)____________2)____________
    五、特殊數集專用記號:
    4)有理數集______5)實數集_____6)空集____
    六、集合的表示方法:
    1)
    2)
    3)
    七、例題講解:
    例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
    a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
    例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
    1)地球上的四大洋構成的集合;
    2)函數的全體值的集合;
    3)函數的全體自變量的集合;
    4)方程組解的集合;
    5)方程解的集合;
    6)不等式的解的集合;
    7)所有大于0且小于10的奇數組成的集合;
    8)所有正偶數組成的集合;
    例3、用符號或填空:
    1)______q,0_____n,_____z,0_____
    2)______,_____
    3)3_____,
    4)設,,則
    例4、用列舉法表示下列集合;
    1.
    2.
    3.
    4.
    例5、用描述法表示下列集合
    1.所有被3整除的數
    2.圖中陰影部分點(含邊界)的坐標的集合
    課堂練習:
    例7、已知:,若中元素至多只有一個,求的取值范圍。
    思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
    小結:
    作業(yè)班級姓名學號
    1.下列集合中,表示同一個集合的是()
    a.m=,n=b.m=,n=
    c.m=,n=d.m=,n=
    2.m=,x=,y=,,.則()
    a.b.c.d.
    3.方程組的解集是____________________.
    4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
    5.設集合a=,b=,
    c=,d=,e=。
    其中有限集的個數是____________.
    6.設,則集合中所有元素的和為
    7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
    8.已知f(x)=x2-ax+b,(a,br),a=,b=,
    若a=,試用列舉法表示集合b=
    9.把下列集合用另一種方法表示出來:
    (1)(2)
    (3)(4)
    10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
    11.已知集合a=
    (1)若a中只有一個元素,求a的值,并求出這個元素;
    (2)若a中至多只有一個元素,求a的取值集合。
    12.若-3,求實數a的值。
    【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
    高一數學課教案篇二
    掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
    向量的性質及相關知識的綜合應用。
    (一)主要知識:
    1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
    (二)例題分析:略。
    四、小結:
    1、進一步熟練有關向量的運算和證明;能運用解三角形的`知識解決有關應用問題,
    2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。
    高一數學課教案篇三
    (2)理解任意角的三角函數不同的定義方法;。
    (4)掌握并能初步運用公式一;。
    (5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
    初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
    任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
    本節(jié)利用單位圓上點的`坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
    教學重難點。
    重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
    難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
    高一數學課教案篇四
    使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
    1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發(fā)現和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
    3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發(fā)展獨立獲取數學知識的能力。
    4.發(fā)展數學應用意識和創(chuàng)新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
    5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
    我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優(yōu)良傳統的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
    1.親和力:以生動活潑的呈現方式,激發(fā)興趣和美感,引發(fā)學習激情。
    2.問題性:以恰時恰點的問題引導數學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學性與思想性:通過不同數學內容的聯系與啟發(fā),強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
    4.時代性與應用性:以具有時代性和現實感的素材創(chuàng)設情境,加強數學活動,發(fā)展應用意識。
    1. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
    2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
    3. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
    兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
    1、激發(fā)學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
    2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學生思考。
    3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
    4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
    5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內容選擇不同教法。
    6、重視數學應用意識及應用能力的培養(yǎng)。
    俗話說的好,好的教學計劃是教學成功的一半,作為一名優(yōu)異的教師,做好一定的教學計劃很有必要。
    總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。希望上面的,能受到大家的歡迎!
    高一數學課教案篇五
    2、掌握標準方程中的幾何意義。
    3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
    3、雙曲線的漸進線方程為、
    探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
    探究2、雙曲線與其漸近線具有怎樣的關系、
    練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
    例1根據以下條件,分別求出雙曲線的標準方程、
    (1)過點,離心率、
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
    例3(理)求離心率為,且過點的雙曲線標準方程、
    2、橢圓的離心率為,則雙曲線的離心率為、
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
    高一數學課教案篇六
    一、準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題
    概念抽象、符號術語多是集合單元的一個顯著特點,例如交集、并集、補集的概念及其表示方法,集合與元素的關系及其表示方法,集合與集合的關系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關系和表示方法,都可以作為求解集合問題的依據、出發(fā)點甚至是突破口。因此,要想學好集合的內容,就必須在準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題上下功夫。
    二、注意弄清集合元素的性質,學會運用元素分析法審視集合的有關問題
    眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:
    (1)、確定性:集合中的元素應該是確定的,不能模棱兩可。
    (2)、互異性:集合中的元素應該是互不相同的,相同的元素在集合中只能算作一個。
    (3)、無序性:集合中的元素是無次序關系的。
    集合的關系、集合的運算等等都是從元素的角度予以定義的。因此,求解集合問題時,抓住元素的特征進行分析,就相當于牽牛抓住了牛鼻子。
    三、體會集合問題中蘊含的數學思想方法,掌握解決集合問題的基本規(guī)律
    布魯納說過,掌握數學思想可使得數學更容易理解和記憶,領會數學思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數學思想內容,例如數形結合的思想、分類討論的思想、等價轉化的思想、正難則反的思想等等,顯得十分活躍。在學習過程中,注意對這些數學思想進行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識,駕馭集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質,都具有十分重要的意義。
    四、重視空集的特殊性,防止由于忽視空集這一特殊情況導致的解題失誤
    空集是一個十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時刻注意有無可能存在空集的情況,否則極易導致解題失誤。這一點,必須引起我們的高度重視。
    高一數學習數學的技巧
    一、轉變觀念,化被動學習為主動學習
    初中階段,特別是初中三年級,老師會通過大量的練習,學生自己也會查找很多資料,這樣就會把自己的數學成績得到明顯的提高,這樣的學習方式是一種被動式的學習也叫題海戰(zhàn)術,學生只是簡單的接受數學知識,并且初中數學的知識相對比較淺顯,學生很快就能掌握知識??墒堑搅烁咧幸院笸ㄟ^題海戰(zhàn)術是能提高一些對數學知識的掌握,可是對于這個知識中的為什么就不能說出其所以然,就不能對相關的知識進行創(chuàng)新。所以高中數學的學習不只是單純的做題就可以掌握其知識,而是要弄得其所以然才行,這樣就需要學生自己去主動發(fā)掘知識的內涵,在老師的指導下把數學知識進行擴展,達到觸類旁通。要做到這樣就需要學生本身更加主動的學習,這樣才能更加的發(fā)現數學中的樂趣。
    二、學會聽課,盡可能掌握更多的知識
    數學的學習是需要老師的引導,在引導下,學生根據自己的情況做一些相應的練習來掌握知識,鞏固知識,要想提高學習效率,就需要學生做到以下一些:
    1、做好預習,提出問題,進行多次閱讀課本,查閱相關資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識,如果不能回答的問題可以在老師講課中去解決。
    2、學會聽課,在初中的教學中老師經常會把一個知識點進行多次的講解和通過大量的練習讓學生去掌握,可是到高中以后,老師對于一個知識點就不會再通過大量的練習來讓學生去掌握,而是通過一些相關知識的講解去引導學生明白這個知識是怎么來的,又如何用這個知識解答一些相關的疑惑,如果學生能明白的話就能在自己的知識下通過課后的練習去鞏固這些知識,同時學生也可以根據老師的引導去擴展知識。
    當然,對于自己在聽課過程中一下子不能明白的知識,可以通過舉手讓老師再進行一次分析講解,也同時做好相關的記錄,以備在課后去進一步弄明白;對于自己在預習中提出的問題,如果老師沒有解決的話,可以利用課余時間請教老師解答,這樣學習就可能學習到更多的知識。
    3、敢于發(fā)表自己的想法,在高中數學學習中,學生會遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學學習的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學生學習的效率也是很低的。
    4、聽好每一分鐘,尤其是老師講課的開頭和結束
    老師講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內容,是把舊知識和新知識聯系起來的環(huán)節(jié),結尾常常是對一節(jié)課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節(jié)知識方法的綱要。
    三、課后鞏固
    很多學生在學習過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識就夠了,其實這是錯誤的。高中數學的知識很多,并且不像初中數學那么淺顯,而是有很多的內涵,如果不能進一步挖掘其內涵,那么只是掌握這個知識的表面,于是在自己做練習時就不知道如何去解了,也不能運用這個知識的。
    做練習是需要的,可是有些學生只是為了練習去做練習,而不是為了鞏固這個知識,擴展這個知識去做練習,經常是做完這個練習后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實,我們還應該把這個練習中使用到的知識串起來,這樣我們就能明白那些知識在運用,也能掌握更多的知識。也同樣能發(fā)現那個知識點是重點,也能發(fā)現難題是如何把相關知識串起來的。
    四、學會看題、學會選做題
    高中的相關資料比初中更多,高考是全社會都關注的問題,所以高中的練習也特別多,有些學生買的資料也多,于是如何利用題目來掌握我們學習的知識,擴展我們學習的知識就成為學習的關鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會有選擇的做題,達到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現那些是這段時間數學學習的重點知識,那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
    五、重視每一次測試,認真分析考試中丟分的原因,并對丟分的地方做出相關的措施。
    數學的學習技巧有很多,每一個人都有自己的不同技巧,我自己根據自己讀書時期的一些體會和現在教學過程中的體會,歸納出幾點技巧與大家共勉。
    高一理數數學記筆記的方法
    一記內容提綱
    老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
    二記疑難問題
    將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
    三記思路方法
    對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
    四記歸納總結
    注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
    五記體會感受
    數學學習是智、情、意、行的綜合。數學學習過程伴隨著積極的情感體驗、意志體驗過程,記下自己學習過程的感受,可以用來更好地調控自己的學習行為。譬如,一道運算很繁雜的習題,依靠堅強的意志獲得解題成功后,可在旁邊寫上“功夫不負有心人”等自勉的語句,用來激勵自己。
    六記錯誤反思
    學習過程中不可避免地會犯這樣或那樣的錯誤,“聰明人不犯或少犯相同的錯誤”,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    高一數學課教案篇七
    2.掌握標準方程中的幾何意義
    3.能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
    一、預習檢查
    1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為.
    2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為.
    3、雙曲線的漸進線方程為.
    4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.
    二、問題探究
    探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關系.
    練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是.
    例1根據以下條件,分別求出雙曲線的標準方程.
    (1)過點,離心率.
    (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.
    例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點的雙曲線標準方程.
    三、思維訓練
    1、已知雙曲線方程為,經過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進線方程是,則雙曲線的離心率等于=.
    4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.
    四、知識鞏固
    1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.
    2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為.
    3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高一數學課教案篇八
    1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
    2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
    3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
    二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
    難點:識別三視圖所表示的空間幾何體。
    三、學法指導:觀察、動手實踐、討論、類比。
    四、教學過程。
    (一)創(chuàng)設情景,揭開課題。
    展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
    (二)講授新課。
    1、中心投影與平行投影:
    中心投影:光由一點向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
    長對正:正視圖與俯視圖的長相等,且相互對正;
    高平齊:正視圖與側視圖的高度相等,且相互對齊;
    寬相等:俯視圖與側視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習。
    課本p15練習1、2;p20習題1.2[a組]2。
    (四)歸納整理。
    請學生回顧發(fā)表如何作好空間幾何體的三視圖。
    (五)布置作業(yè)。
    課本p20習題1.2[a組]1。
    高一數學課教案篇九
    教學目標:
    (1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
    (2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
    (3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
    教學重難點:
    (1)重點:了解集合的含義與表示、集合中元素的特性。
    (2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
    教學過程:
    [設計意圖]引出“集合”一詞。
    【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
    [設計意圖]探討并形成集合的含義。
    【問題3】請同學們舉出認為是集合的例子。
    [設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
    [設計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
    [設計意圖]引出并介紹列舉法。
    【問題6】例1的講解。同學們能用列舉法表示不等式x—73的解集嗎?
    【問題7】例2的講解。請同學們思考課本第6頁的思考題。
    [設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
    【問題8】請同學們總結這節(jié)課我們主要學習了那些內容?有什么學習體會?
    [設計意圖]學習小結。對本節(jié)課所學知識進行回顧。
    布置作業(yè)。
    高一數學課教案篇十
    1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
    2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想
    3、了解集合元素個數問題的討論說明
    通過提問匯總練習提煉的形式來發(fā)掘學生學習方法
    培養(yǎng)學生系統化及創(chuàng)造性的思維
    [教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
    [教學方法]:講練結合法
    [授課類型]:復習課
    [課時安排]:1課時
    [教學過程]:集合部分匯總
    本單元主要介紹了以下三個問題:
    1,集合的含義與特征
    2,集合的表示與轉化
    3,集合的基本運算
    一,集合的含義與表示(含分類)
    1,具有共同特征的對象的全體,稱一個集合
    2,集合按元素的個數分為:有限集和無窮集兩類
    高一數學課教案篇十一
    《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。-----《實習作業(yè)》。本節(jié)課程體現數學文化的特色,學生通過了解函數的發(fā)展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的學習方式帶給他們的學習數學的樂趣。
    該內容在《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。
    《標準》強調數學文化的重要作用,體現數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創(chuàng)新精神,以及數學文明的深刻內涵。
    2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
    3.在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
    重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;
    難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
    【課堂準備】。
    1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協調工作,確保每位學生都參加。
    2.選題:根據個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
    3.分配任務:根據個人情況和優(yōu)勢,經小組共同商議,由組長確定每人的具體任務。
    4.搜集資料:針對所選題目,通過各種方式(相關書籍----《函數在你身邊》、《世界函數通史》、《世界著名科學家傳記》等;搜集素材,包括文字、圖片、數據以及音像資料等,并記錄相關資料,寫出實習報告。
    6.把各組的實習報告,貼在班級的學習欄內,讓學生學習交流。
    【教學過程】。
    1.出示課題:交流、分享實習報告。
    2.交流、分享:(由數學科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
    (1)學生1:函數小史。
    數學史表明,重要的數學概念的產生和發(fā)展,對數學發(fā)展起著不可估量的作用。有些重要的數學概念對數學分支的產生起著奠定性的作用。我們剛學過的函數就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數等概念日益滲透到科學技術的各個領域。最早提出函數(function)概念的,是17世紀德國數學家萊布尼茨。最初萊布尼茨用“函數”一詞表示冪。1755年,瑞士數學家歐拉把給出了不同的函數定義。中文數學書上使用的“函數”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(1895年)一書時,把“function”譯成“函數”的。我們可以預計到,關于函數的爭論、研究、發(fā)展、拓廣將不會完結,也正是這些影響著數學及其相鄰學科的發(fā)展。
    (2)教師帶頭鼓掌并簡單評價。
    (3)學生2:函數概念的縱向發(fā)展:
    變革,形成了函數的現代定義形式。
    (4)教師帶頭鼓掌并簡單評價。
    (5)學生3:我國數學家李國平與函數。
    學生3描述了數學家中國科學院數學物理學部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學數學天文系。后歷任中國科學院數學計算技術研究所所長,中國科學院武漢數學物理研究所所長,中國數學會理事,中國科學院學部委員等職務。學生還通俗地講述了李國平先生在微分方程復變函數論領域的卓越貢獻。
    (6)教師帶頭鼓掌并簡單評價。
    (7)學生4:函數概念對數學發(fā)展的影響。
    (8)教師帶頭鼓掌并簡單評價。
    (9)學生5:函數概念的歷史演變過程。
    上述函數概念的歷史演變過程,就是一系列弱抽象的過程.學生展示了下表:早期函數概念。
    代數函數。
    函數是這樣一個量,它是通過其它一些量的代數運算得到的。
    近代函數概念。
    映射函數。
    18世紀函數概念。
    解析函數。
    函數是指由一個變量與一些常量通過任何方式形成的解析表達式。
    19世紀函數概念。
    變量函數。
    對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應,則稱y是x的函數.。
    (10)教師帶頭鼓掌并簡單評價。
    3.課堂小結:
    4.實習作業(yè)的評定:
    高一數學課教案篇十二
    對數函數(第二課時)是20__人教版高一數學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數函數相關知識,分三個課時,這里是第二課時復習鞏固對數函數圖像及性質,并用此解決三類對數比大小問題,是對已學內容(指數函數、指數比大小、對數函數)的延續(xù)和發(fā)展,同時也體現了數學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用。
    二、教學目標。
    根據教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:
    學習目標:
    1、復習鞏固對數函數的圖像及性質。
    2、運用對數函數的性質比較兩個數的大小。
    能力目標:
    1、培養(yǎng)學生運用圖形解決問題的意識即數形結合能力。
    2、學生運用已學知識,已有經驗解決新問題的能力。
    3、探索出方法,有條理闡述自己觀點的能力。
    德育目標:
    培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質。
    三、教材的重點及難點。
    教學中將在以下2個環(huán)節(jié)中突出教學重點:
    1、利用學生預習后的心得交流,資源共享,互補不足。
    2、通過適當的練習,加強對解題方法的掌握及原理的理解。
    教學中會在以下3個方面突破教學難點:
    1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
    2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    四、學生學情分析。
    長處:高一學生經過幾年的數學學習,已具備一定的數學素養(yǎng),對于已學知識或用過的數學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數函數的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數學能力上說,指數比大小問題的解題思想和方法在這可借鑒,另外數形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
    學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯系認識上還顯不足。
    五、教法特點。
    新課程強調教師要調整自己的角色,改變傳統的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
    六、教學過程分析。
    1、課件展示本節(jié)課學習目標。
    設計意圖:明確任務,激發(fā)興趣。
    2、溫故知新(已填表形式復習對數函數的圖像和性質)。
    設計意圖:復習已學知識和方法,為學生形成知識間的聯系和框架建立平臺,并為下一步的應用打下基礎。
    3、預習后心得交流。
    1)同底對數比大小。
    2)既不同底數,也不同真數的對數比大小。
    設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。
    4、合作探究——同真異底型的對數比大小。
    以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數的大小關系探究出不同底對數函數在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
    設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現“授之以魚,不如授之以漁”的教學理念。另外數學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數”。
    5、小結。
    6、思考題。
    以20__高考題為例,讓學生學以致用,增強數學學習興趣。
    7、作業(yè)。
    包括兩個方面:
    1、書寫作業(yè)。
    2、下節(jié)課前的預習作業(yè)。
    通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當的提示,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數學思想、數學方法的小結內容,使這些數學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
    高一數學課教案篇十三
    各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節(jié)“一元二次不等式解法”。
    下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
    一、教材分析。
    (一)教材的地位和作用。
    “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
    (二)教學內容。
    本節(jié)內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
    二、教學目標分析。
    根據教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:
    知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
    能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
    情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
    三、重難點分析。
    一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
    要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
    四、教法與學法分析。
    (一)學法指導。
    教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養(yǎng)“創(chuàng)新型”人才的需要。
    (二)教法分析。
    本節(jié)課設計的指導思想是:現代認知心理學——建構主義學習理論。
    建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
    本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
    高一數學課教案篇十四
    1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
    (1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念.
    (2)能從數和形兩個角度認識單調性和奇偶性.
    (3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
    2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
    3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度.
    (1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
    (2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
    (1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
    (2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
    (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
    (2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.
    函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
    高一數學課教案篇十五
    解決集合元素的問題時,我們一定要注意集合中的元素要滿足互異性,以免產生增根。
    3、注意特殊集合——空集。
    空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關系的問題時要特別注意空集。
    4、利用特殊工具——韋恩圖和數軸。
    集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結果。在運算過程中,一般用數軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。
    高一數學課教案篇十六
    重難點分析
    本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
    本節(jié)的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
    教法建議
    1.性質的引入方法很多,以下2種比較常用:
    (1)設計問題引導啟發(fā):由設計的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導學生猜想出
    (2)從算術平方根的意義引入.
    2.性質的鞏固有兩個方面需要注意:
    (1)注意與性質進行對比,可出幾道類型不同的題進行比較;
    (2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
    (第1課時)
    1.掌握二次根式的性質
    2.能夠利用二次根式的性質化簡二次根式
    3.通過本節(jié)的學習滲透分類討論的數學思想和方法
    對比、歸納、總結
    1.重點:理解并掌握二次根式的性質
    2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
    1課時
    五、教b具學具準備
    投影儀、膠片、多媒體
    復習對比,歸納整理,應用提高,以學生活動為主
    一、導入新課
    我們知道,式子()表示非負數的算術平方根.
    問:式子的意義是什么?被開方數中的表示的是什么數?
    答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
    二、新課
    計算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數的冪的底數都是什么數?
    2.各小題的結果和相應的被開方數的冪的底數有什么關系?
    3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.
    高一數學課教案篇十七
    (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
    (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
    2.過程與方法。
    學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
    3.情感態(tài)度與價值觀。
    (1)提高空間想象力與直觀感受。
    (2)體會對比在學習中的作用。
    (3)感受幾何作圖在生產活動中的應用。
    高一數學課教案篇十八
    復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
    方法規(guī)律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。
    一、基礎訓練。
    a、511b、512c、1023d、1024。
    2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為。
    a、b、
    c、d、
    二、典型例題。
    例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數。