外出旅游是一種拓展視野、放松身心的方式,我想我們需要安排一次旅行了吧。如何與他人建立良好的溝通和合作關系?范文是總結寫作的參考,但要注意保持自己的獨立思考和創(chuàng)新。
因數與倍數的課堂筆記篇一
(1)能直接在方格圖上,數出相關圖形的面積。
(2)能利用分割的方法,將較復雜的圖形轉化為簡單的圖形,并用較簡單的方法計算面積。
2、過程與方法
(1)在解決問題的過程中,體會策略、方法的多樣性。
(2)學會與人交流思維過程與結果。
3、情感態(tài)度與價值觀
積極參與數學學習活動,體驗數學活動充滿著探索、體驗數學與日常生活密切相關。
1、重點是指導學生如何將圖形進行分割,從而讓學生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。
2、借助圖形,讓學生動手,自主探索、合作交流解決問題的方法。
一、創(chuàng)設情境、揭示新課。
我要說班里每位同學都是優(yōu)秀的設計師!因為大家都在設計著自己美好的將來,所以在很用功的學習。希望大家繼續(xù)努力,使自己美好的設計成為現實。下面我們來看一看,我們的同行——一位地毯圖案設計師,設計的圖案。
展示地毯上的圖形,讓學生仔細觀察圖形特點,說發(fā)現。
地毯是正方形,邊長為14米藍色部分圖形是對稱的,……
師:看這副地毯圖,請你提出數學問題。
根據學生的回答展示問題:“地毯上藍色部分的面積是多少?”
師板書課題:地毯上的圖形面積
二、自主探索、學習新知
如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?
1、學生獨立解決問題
要求學生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。
2、小組內交流、討論
3、班內反饋
請學生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學生說得合理都給以肯定。
學生的答案也許有:
(1)直接一個一個地數,為了不重復,在圖上編號;(數方格法)
(2)因為這個圖形是對稱的,所以平均分成4份,先數出一份中藍色的面積,再乘4;(化整為零法)
(3)用總正方形面積減去白色部分的面積;(大減小法)
(4)將中間8個藍色小正方形轉移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉移填補法)
4、學生總結求藍色部分面積的方法。
三、鞏固練習、拓展運用(課本第19頁練一練)
1、第1題
(1)學生獨立思考,求圖1的面積。
(2)說一說計算圖形面積的方法。引導學生了解“不滿一格的當作半格數”。
2、第2題
獨立解決后班內反饋。
3、第3題
(1)學生獨立填空。求出每組圖形的面積。學生完成后班內交流反饋答案。
(2)學生觀察結果,說發(fā)現。
第(1)題的4個圖形面積分別為1、2、3、4的平方數;第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。
四、全課小結,課后拓展
今天我們進行了那些活動,你收獲了什么?
師:對于計算方格圖中規(guī)則圖形的面積,我們可以分割,可以直接數,可以“大減小”,還可以轉移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數學課上我們將繼續(xù)學習。課后,有興趣的同學可以在空白方格紙上設計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。
因數與倍數的課堂筆記篇二
[教學內容]。
數的世界。
[教學目標]。
1、結合具體情境,認識自然數和整數,聯(lián)系乘法認識倍數和因數。??。
2、探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數.
3.培養(yǎng)學生綜合應用的能力。
教具準備。
多媒體課件、圖片。
[教學重、難點]。
探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數。
[教學過程]。
創(chuàng)設“水果店”的情境,呈現了生活中的數有自然數、負數、小數。在比較中認識自然數、整數,使對數的認識進一步系統(tǒng)化。
先讓學生觀察情境圖,說說圖中有哪些數,并給它們分類。
學生匯報觀察結果,通過比較認識自然數、整數,使學生對數的認識進一步系統(tǒng)化。
1、在解決書上提出的問題的過程中引出算式。
5×4=20(元)。
以這個乘法算式為例說明倍數和因數的含義,即20是4的倍數,20也是5的倍數,4是20的因數,5也是20的因數。引導學生認識倍數與因數,體會倍數與因數的含義。
在利用乘法算式說明倍數和因數的含義的基礎上,出示一個除法算式,如:18÷6=3啟發(fā)學生思考:根據整數除法算式能不能確定兩個數之間的倍數關系。
說明:在研究倍數和因數,范圍限制為不是零的自然數。
2、你寫我說。
讓學生同桌間互相寫算式,再說一說。算式可以是乘法算式,也可以是除法算式。
三、找一找。
1、判斷題目中給的數是不是7的倍數。
先讓學生用自己的方法判斷,再組織學生交流,使學生逐步體會可以通過想乘法算式或除法算式的方法來判斷。
2、找7的倍數:
四、練一練:
第2題:先讓學生自己找一找4的倍數和6的倍數,并用不同的符號做好記號。然后組織學生交流,并讓學生說說找倍數的方法。最后,說說哪幾個數既是???4的倍數有是6的倍數。
第3題:先讓學生獨立寫一寫,再組織學生交流各自的方法,并在交流比較的過程中體會怎樣做到不重復、不遺漏。體會到像這樣找一個數的倍數,一般用乘法想比較方便。
[板書設計]。
像0、1、2、3、4、5、…這樣的數是自然數。
像-3、-2、-1、0、1、2、…這樣的數是整數。
5×4=20(元)??????20是4和5的倍數。
第2課時。
[教學內容]。
2、5的倍數特征。
[教學目標]。
1、經歷探索2、5倍數的特征的過程,理解2、5倍數的特征,能判斷一個數是不是2或5的倍數。
2、知道奇數、偶數的含義,能判斷一個數是奇數或是偶數。
3、在觀察、猜測和討論過程中,提高探究問題的能力。
[教學重、難點]。
探索2,5的倍數的特征。
[教學準備]。
多媒體課件1到100的數字表格。
[教學過程]。
一、5的倍數的特征的探究。
讓學生在100以內的數表中找出5的倍數,用自己的方式做記號,并觀察、思考5的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納。
5的倍數的特征:個位上是0或5的數是5的倍數。
試一試:
嘗試用5的倍數特征來判斷一個數是不是5的倍數。
二、2的倍數的特征的探究。
讓學生在100以內的數表中找出2的倍數,用自己的方式做記號,并觀察、思考2的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納2的倍數的特征:
個位上是0、2、4、6、8的數是2的倍數。
在學生理解2的倍數的特征后再揭示偶數、奇數的含義,并進行你問我答的。
判斷練習。
偶數:是2的倍數的數叫做偶數。
奇數:不是2的倍數的數叫做奇數。
四、練一練:
第2題:引導學生先獨立思考,然后組織學生交流自己的思考方法。在引導學生判斷時,應根據2、5的倍數特征說明理由。如“因為85不是2的倍數,所以不能正好裝完”;又如:“因為85是5的倍數,所以能正好裝完?!?BR> 五、數學游戲:
這是圍繞“2、5的倍數的特征”設計的數學游戲,通過游戲加深學生對2、5的倍數的特征的理解。
[板書設計]。
2、5的倍數的特征。
5的倍數的特征:個位上是0或5的數是5的倍數。
2的倍數的特征:個位上是0、2、4、6、8的數是2的倍數。
是2的倍數的數叫偶數。
不是2的倍數的數叫奇數。
第3課時。
[教學內容]。
[教學目標]。
1、經歷探索3倍數的特征的過程,理解3倍數的特征,能判斷一個數是不是3的倍數。
2、發(fā)展分析、比較、猜測、驗證的能力。
3、滲透集合思想和不完全歸納法。
[教學重、難點]發(fā)展分析、比較、猜測、驗證的能力。
[教具準備]。
多媒體課件和1到100的數字表格。
[教學過程]。
一、3的倍數的特征的猜想。
我們研究了2、5的倍數的特征,那么3的倍數有什么特征呢?引導學生提出猜想。學生可能會猜想:個位上能被3整除的數能被3整除等,老師引導學生進行討論、研究。
二、3的倍數的特征的探究。
3的倍數的特征每個數位的各個數字加起來是3的倍數。
試一試:
嘗試用3的倍數特征來判斷一個數是不是3的倍數。
三、練一練:
第2題:
讓學生準備幾張卡片:3、0、4、5邊擺邊想,再交流討論思考的過程。
(1)30、45、54(2)30、54?(3)30、45?(4)30。
四、實踐活動:
[板書設計]。
3的倍數的特征:這個數各位數字之和是3的倍數。
第4課時。
[教學目標]。
1、用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
2、在1-100的自然數中,能找到某個自然數的所有因數。
3、培養(yǎng)學生的分析能力和不完全歸納的數學思想。
[教學重、難點]。
用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
1。動手拼長方形。
用12個小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,再交流不同的拼法。
學生一般會用乘法思路思考:哪兩個數相乘等于12?然后找出:
1×12、2×6、3×4。這種思路就是找一個數的因數的基本方法,要引導學生關注有序思考,并體會一個數的因數個數是有限的。
2。試一試。
找因數的基本練習:找9和15的因數。讓學生獨立完成,注意引導學生有序思考。
3.練一練。
第2題:先讓學生自己找一找18的因數和21的因數,并用不同的符號做好記號,然后讓學生說說找因數的方法。最后,說說哪幾個數既是18的因數,又是21的因數。
第3題;
利用數形結合,進一步體會找因數的方法。
第5題:可以引導學生用找因數的方法進行思考,鼓勵學生將想到的排列方法列出來,在交流的基礎上,使學生經歷有條理的思考過程。48=1×48=2×24=3×16=4×12=6×8,48有10個因數,就有10種排法。如每行12人,排4行;每行4人,排12行等。37只有兩個因數,只有兩種排法。
【板書設計】。
找因數。
面積是12的長方形有:6種圖形????????1×12=12。
2×6=12。
3×4=12。
第5課時。
[教學內容]找質數。
[教學目標]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
2、能正確判斷質數和合數。
3、在研究質數的過程中豐富對數學發(fā)展的認識,感受數學文化的魅力。
[教學重、難點]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
一、動手拼長方形,揭示質數、合數的意義。
1、用小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,邊拼邊填寫書上的表格。
2、引導學生觀察并提出問題:“這些小正方形有的只能拼成一種長方形,有的能拼成兩種或兩種以上的長方形,為什么?”
3、揭示質數、合數的意義。
組織學生觀察、比較、分析逐步發(fā)現特征,并把幾個自然數分類,揭示質數和合數的意義。
從概念出發(fā)理解“1既不是質數,也不是合數。”
二、討論判斷質數、合數的方法。
1、嘗試判斷:2、8、9、13、51、37、91、52是質數還是合數。
先讓學生獨立判斷,再組織交流“怎樣判斷一個數是質數還是合數”
2、歸納方法:
只要找到一個1和本身以外的因數,這個數就是合數。如果除了1和它本身找不到其他的因數,這個數就是質數。
三、探索活動:
第1題:
用“篩法”找100以內的質數。引導學生有步驟、有目的地操作、觀察和交流,找出100以內的質數。
介紹這種方法是兩千多年前希臘數學家提出的研究質數的方法,稱為“篩法”?,F在隨著計算機的發(fā)展,這種操作方法可以編成程序讓計算機進行操作。這樣,可以使學生了解數學發(fā)展的歷史,感受到數學文化的魅力,豐富學生對數學發(fā)展的認識,激起學生探究知識的欲望和興趣。
第2題:
本題引導學生通過操作、觀察,探索規(guī)律。
第(1)、(2)題,學生會發(fā)現這些質數都分布在第1列和第5列,為什么?
[板書設計]。
找質數。
一個數除了1和它本身以外還有別的因數,這個數就叫合數。?????????????????????????????一個數只有1和它本身兩個因數,這個數叫做質數。
1既不是質數,也不是合數。
第6課時。
[教學內容]數的奇偶性。
[教學目標]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學重、難點]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學過程]。
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數、偶數相加的規(guī)律。
[
[板書設計]。
數的奇偶性。
例子:???????????????????結論:
因數與倍數的課堂筆記篇三
(1)教材的地位和前后關系:在學習本單元之前,學生已經認識了百以內、千以內、萬以內、億以內以及一些整億的數。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(2)教學目標:
知識、技能目標:
1、讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
情感、價值目標:
2、讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心。
(3)教學重點:
理解倍數和因數的含義與方法
(4)教學難點:
掌握找一個數的倍數和因數的方法。
首先從學生的操作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數和因數的概念。
其次以學生討論、交流、相互評價,促成學生對找一個數的倍數、一個數的因數的方法進行優(yōu)化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
(1)合作交流、揭示主題
用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。
(2)教學概念、正反促成
利用橫里讀、豎里讀,形成了比較系統(tǒng)的知識概念,并及時出示整個前提:是在不含0的自然數,讓學生自己舉例,示范說、相互說,最后以教師舉學生不容易想到了例子:4×4=16,18÷6=3,促成學生不僅從乘法的角度去思考,而且也可以從除法的角度進行,也為后面找一個數的因數的方法做好伏筆。
(3)設疑,置疑,激發(fā)學生的反思力度
在教學找一個數的倍數時,“才說到12、18是3的倍數(板書:3的倍數),3的倍數是不是只有12、18這兩個數呢?”組織交流:3的倍數有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?”
(4)判斷中進行教學內容的遞深,形成了反思、學習和強化的整個學習過程。在學生做出“6是倍數”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數的因數”以談話導入,形成知識相互的聯(lián)系與區(qū)別,談話:必須說清誰是誰的倍數,誰是誰的因數。所以6可能是某些數的倍數,也可能是某些數的因數,那我們就來找一個數的因數。你能找出36所有的因數嗎?”
(5)討論互評,自主學習
放手讓學生學習找一個數的因數,從無序到有序,從自尋到互學,請學生板書,
學生評價,“提問:你是用什么方法找到一個數的因數,可以介紹給大家嗎?還有其他方法嗎?”
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指導,掌握不失總結
如:提問:5為什么不是36的因數?(因為36÷5不能整除,有余數)
小結:不能被這個數整除的數就不是這個數的因數。
小結:我們即可以從乘法算式,也可以從除法算式找到一個數的因數。
提問:那對于一個數的因數從36的因數、15的因數這兩個例子又有什么發(fā)現?
總結:對于一個數的倍數和因數,它們是不同的,但通過乘法算式、除法算式又是相互依存的、相互聯(lián)系的。
xxxx
因數與倍數的課堂筆記篇四
1、使學生理解質數和合數的概念,能正確地判斷一個數是質數還是合數。
2、培養(yǎng)學生觀察、比較、抽象、慨括的能力。
3、培養(yǎng)學生自主探究的精神和獨立思考的能力。教學重點:質數和合效的概念。
質數、臺數、濟數、偶數的區(qū)別
給教室里的人分類。體會:同樣的事物,依據不問的分類標準,可以有多種小_的分類方法。明確:分類的際準很重要。
說一說,在我們學習的空間,你可以得到那些數?(要求與同學說的盡也不重復)
給這些自然數分類。根據自然數能不能被2整除,可以分成新數和偶數兩類。
板書對應的集合圖。
自然數
(能不能被2整除)
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
今天我們就用找約數的方法來給自然數分類。
復習:什么叫約數?怎樣找一個數所有的約數?
同桌合作。找出列舉的各數的所有的約數。(同時板演)
引導學生觀察:觀察以上各數所含的數的個數,你能把它們分成幾種情況‘!
根據學生的回答板書。
自然數
(約數的個數)
(只有兩個約數)(有3個或3個以上的約數)
引導學生思考:只含有兩個約數的,這兩個約數有什么特點?引出約數的概念。
明確:這是一種新的分類方法??磸S集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數陽臺數的知識)
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,新數陽偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?
15 28 31 53 77 89 1ll
學生獨立完成。
問:你是怎么判斷的?
明確:可以找出每個數所有的約數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約束,就能判斷這個數是合數還是質數。不必找出所有的約數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例子1的判斷是否正確。
完成練一練。
1、堅持下面各數的約數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
22 29 35 49 51 79 83
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
學到這里,一種新的分類方法,你掌握了嗎?學生回答:相機揭示課題,質數和合數
討論:質數、合數、奇數、偶數之間是這樣的關系呢?
(略)。
因數與倍數的課堂筆記篇五
尊敬的各位專家、老師:
大家好!我說課的內容是蘇教版小學數學四年級下冊第70—73頁:《倍數和因數》。這節(jié)課教學倍數和因數的認識,學習找一個自然數的倍數和因數。教材安排了三道例題、兩道“試一試”及相應的“想想做做”,例1通過用12個同樣大的正方形拼成不同的長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數和因數的意義。例2教學找一個數的倍數,并結合“試一試”引導發(fā)現一個數倍數的特征。例3教學找一個數的因數,再結合“試一試”引導發(fā)現一個數因數的特征。通過本節(jié)課的學習,要達到以下教學目標:
1、通過操作活動得出相應的乘除算式,幫助學生理解倍數和因數的意義;探索求一個數的倍數和因數的方法,發(fā)現一個數倍數和因數的某些特征。
2、使學生在認識倍數和因數以及探索一個數的倍數或者因數的過程中,進一步體會數學知識之間的內在聯(lián)系,提高數學思考的水平。
教學重點是理解倍數和因數的含義,掌握找一個數的倍數和因數的方法。
教學難點是掌握找一個數的倍數和因數的方法。
為了順利完成教學目標,有效突出重點,突破難點,在尊重教材的基礎上,我打算根據學生的認知特點和心理特征,通過激趣、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣,讓學生通過獨立思考、合作交流進行自主探索,教師及時引導學生掌握數學思考的方法。
基于以上認識我預設了如下幾個教學環(huán)節(jié):
首先和學生交流生活中的各種各樣的關系,“比如你們和老師是什么關系?你和媽媽呢?其次引入數學中自然數和自然數之間也有各種關系,初步體會數和數的對應關系,既拉近了數學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。
我準備分三個層次進行教學。
(1)操作體驗,初步感知倍數和因數的意義。通過操作我們能發(fā)現許多的知識。請同學們拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著那些不同的乘法算式。再讓學生根據算式猜一猜“他可能是怎么擺的”,然后電腦演示相應的操作。用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。學生充分經歷了“由形到數、再由數到形”的過程,既為倍數和因數概念的提出積累了素材,又初步感知倍數和因數的關系,為正確理解概念提供了幫助。
(2)在具體的乘法算式中,理解倍數和因意義。值得注意的是,教材沒有給出抽象的意義,而是結合乘法算式進行直觀的描述,這樣不僅降低了難度,而且為學生的后續(xù)學習拓展了空間。因此,教師首先根據算式介紹倍數和因數的意義,然后讓學生根據其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數,12是倍數嗎?這一反例的教學,充分感受倍數和因數是相互依存的。
(3)及時練習。我把“想想做做”第1題改為學生自己出題,說說誰是誰的倍數,誰是誰的因數,既達到了鞏固的目的,來自學生自身的材料又更加真實,學生更容易接受。同時考慮到學生受思維定勢的影響,可能所舉例子都是乘法算式,教師就需及時有效“介入”比如,“24除以3=8”,促成學生不僅從乘法的角度去思考而且也可以從除法的角度進行,為后面找一個數的因數做好伏筆。
分兩個層次進行,首先教學找一個數的倍數。我將教學過程設計成了一個個問題鏈,什么樣的數是3的倍數?,怎樣找才能有條理?比一比誰找的倍數多?能把3的倍數全找完嗎,應該怎樣表示問題的答案?你有什么竅門找一個數的倍數?在學生自主探索的基礎上,小組合作,全班交流,學生之間積極互動,“捕捉”對方的想法,完善自己的認知理解掌握找一個數倍數的方法并結合“試一試”,通過交流比較,發(fā)現“一個數的倍數的個數是無限的,一個數最小的倍數是它本身,沒有最大的倍數”。第二個層次教學找一個數的因數,相對于找一個數的倍數而言,找一個數的因數無疑難度增加了,在此環(huán)節(jié)中不必急于告訴學生方法,而是放手讓學生獨立思考,嘗試探索“從學生的角度看問題是教學取得實效的關鍵”對學生出現的情況我作了充分的預設:有的可能是用乘法想(乘積是36的兩個數是36的因數)有的可能是用除法想(除數和商都是36的因數)這兩種方法都出現一個問題:無序。從而導致重復、遺漏現象。為了解決問題,我再次放手,小組交流,,并在此基礎上讓學生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結,最后師生達成共識:按一定的順序一對對的找,找到兩個數接近為止。從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。由于一個數倍數特征的借鑒,一個數因數的特征放手讓學生自己總結。
因數與倍數的課堂筆記篇六
【知識點】:
1、認識自然數和整數,聯(lián)系乘法認識倍數與因數。
像0,1,2,3,4,5,6,…這樣的數是自然數。
像-3,-2,-1,0,1,2,3,…這樣的數是整數。
2、我們只在自然數(零除外)范圍內研究倍數和因數。
3、倍數與因數是相互依存的關系,要說清誰是誰的倍數,誰是誰的因數。
補充【知識點】:
一個數的倍數的個數是無限的。
探索活動(一)2,5的倍數的特征。
【知識點】:
1、2的倍數的特征。
個位上是0,2,4,6,8的數是2的倍數。
2、5的倍數的特征。
個位上是0或5的數是5的倍數。
3、偶數和奇數的定義。
是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
4、能判斷一個數是不是2或5的倍數。能判斷一個非零自然數是奇數或偶數。
補充【知識點】:
既是2的倍數,又是5的倍數的特征。個位上是0的數既是2的倍數,又是5的倍數。
探索活動(二)3的倍數的特征。
【知識點】:
1、3的倍數的特征。
一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。
2、能判斷一個數是不是3的倍數。
補充【知識點】:
1、同時是2和3的倍數的特征。
個位上的數是0,2,4,6,8,并且各個數位上的數字的和是3的倍數的數,既是2的倍數,又是3的倍數。
2、同時是3和5的倍數的特征。
個位上的數是0或5,并且各個數位上的數字的和是3的倍數的數,既是3的倍數,又是5的倍數。
3、同時是2,3和5的倍數的特征。
個位上的數是0,并且各個數位上的數字的和是3的倍數的數,既是2和5的倍數,又是3的倍數。
找因數。
【知識點】:
在1~100的自然數中,找出某個自然數的所有因數。方法:運用乘法算式,思考:哪兩個數相乘等于這個自然數。
補充【知識點】:
一個數的因數的個數是有限的。其中最小的因數是1,最大的因數是它本身。
找質數。
【知識點】:
一個數只有1和它本身兩個因數,這個數叫作質數。
一個數除了1和它本身以外還有別的因數,這個數叫作合數。
3、判斷一個數是質數還是合數的方法:
一般來說,首先可以用“2,5,3的倍數的特征”判斷這個數是否有因數2,5,3;如果還無法判斷,則可以用7,11等比較小的質數去試除,看有沒有因數7,11等。只要找到一個1和它本身以外的因數,就能肯定這個數是合數。如果除了1和它本身找不到其他因數,這個數就是質數。
數的奇偶性。
【知識點】:
1、運用“列表”“畫示意圖”等方法發(fā)現規(guī)律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發(fā)現“奇數次在北岸,偶數次在南岸”的規(guī)律。
2、能夠運用上面發(fā)現的數的奇偶性解決生活中的一些簡單問題。
3、通過計算發(fā)現奇數、偶數相加奇偶性變化的規(guī)律:
偶數+偶數=偶數奇數+奇數=偶數。
因數與倍數的課堂筆記篇七
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發(fā)展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
整理、應用因數和倍數的知識。
應用概念正確判斷、推理。
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發(fā)現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發(fā)現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節(jié)課主要復習的哪些內容?你有哪些收獲?
因數與倍數的課堂筆記篇八
《因數和倍數》這一堂課在各個版本中的內容和學習目標都存在著差異。今天聽了《因數和倍數》的不同上法,結合自己先前對教材的認識與設計,現在比較著來談談聽完課后的一些感想。
首先我說說這兩堂課教學內容上的差異。第一堂課安排的教學內容有三部分。第一部分是認識因數和倍數,指導學生正確描述因數和倍數。其次安排的教學內容是找一個數的因數和倍數。第三部分是了解因數和倍數以及一個數的最大因數和最小倍數的特性。第二堂課先建立了整除的概念,理清除盡和整除之間的關系,然后在整除的基礎上認識因數和倍數,最后讓學生學會描述因數和倍數。(即4句話:誰能被誰整除,誰能整除誰,誰是誰的倍數,誰是誰的約數。)。
接著我來說說自己的想法。
第一堂課的上法比較嚴謹,通過教師的傳授和學生的練習,相信大多數學生都能認識因數和倍數并能正確描述,同時也會找一個數的因數和倍數,能根據因數和倍數的特性解決問題。完成了本課的技能目標。在課中,教師讓學生說得很充分,并有針對性的進行了練習,使學生扎實地掌握了知識,為后續(xù)的學習打下了結實的基礎。
在這一課的導入中,教師用乘算式,讓學生先說一說各部分的名稱,然后對7×3=21給出描述性的語句“我們說7是21的因數,3也是21的因數;21是7的倍數,21也是3的倍數?!边@個導入,除了在乘法里出現了因數這個詞和本課內容有關聯(lián)外,其他關系并不大,用這樣的練習作為切入點,它的用處并沒有體現。
其次,教師對學生提醒:“我們說的因數和倍數一般指的是整數,不包括0”,在這里,我覺得教師給出的定義一定要準確“我們說的因數和倍數都是指“0”以外的自然數?!闭f到這個0是否除外的問題,人教論壇上還有爭議,因此對這個問題暫不考慮。在判斷是否能說倍數和因數的練習題中,對于加和減題是否能說倍數和因數的判斷,我覺得沒有存在的必要。在這里教師設計的題“判斷8÷4=2,4和2是8的因數,8是4和2的倍數這句話的對錯”很有價值,讓學生感悟到不管是根據乘法還是除法算式都可以找到因數和倍數。
第三,在找36的因數中,教師對找的方法進行了指導,要一對一對有序地找。在這里教師可以繼續(xù)提問學生“找到什么時候停?”讓學生自然得出:找到兩個因數非常接近時就不用再找了。這樣一來對學生又是一個知識層面上的提高。
第四,在最后的鞏固練習中,有一題講到一個數的最大因數和最小倍數的和是20,問學生這個數是多少。這題是學生對因數和倍數特性的反饋,在這題完成后,我想到了一個練習題“一個數最小的倍數是18,找出這個數的其他因數”,這樣整合特性和找一個數的因數這兩個知識點。還有一題在數軸上面標出3的倍數,在數軸下面標出4的倍數,這里出現共同的點,這樣的話能否對公倍數適當地提點一下呢?讓學生留點疑問結束課堂教學,為后一課的學習埋下伏筆。
第二堂課的開始教師比較開放,讓學生想一個除法算式,然后把這些出發(fā)算式歸類,分類出除不盡和除盡,在除盡里再分出整除。這里充分發(fā)揮了學生的主體作用,教學的素材來源于學生自己,提高了學生的學習積極性。在對除盡的區(qū)分中,教師讓學生用語言來描述除盡,我覺得對學生來說只要會辨別就行了,不需要要準確的語言去定義概念。教師給出的整除的概念不夠嚴密,既然沒有向學生說明整除所說的數都不包括0,那么在定義給出時,應向學生說明除0以外的自然數。
因數與倍數的課堂筆記篇九
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節(jié)課的教學我把重點定位于理解因數和倍數的含義。
因數與倍數的課堂筆記篇十
1.理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法。
2.在探究的過程中體會數學知識之間的內在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
3.培養(yǎng)學生的探索意識以及熱愛數學學習的情感。
因數與倍數的課堂筆記篇十一
教材第6頁例3及練習二第3~8題及思考題。
1.通過學習,使學生能自主探究,找出求一個數的倍數的方法。
2.結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。
3.初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數學知識的內在聯(lián)系。
重點:掌握求一個數的倍數的方法。
難點:理解因數和倍數兩者之間的關系。
1、探索找倍數的方法。(教學例3)。
出示例3:2的倍數有哪些?
師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……。
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?
生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?(不能)。
師:為什么?(因為2的倍數有無數個)。
師:怎么辦?(用省略號)。
師:通過交流,你有什么發(fā)現?
引導學生初步體會2的倍數的個數是無限的。
追問:你能用集合圖表示2的倍數嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。
2、反思提煉。師:從前面找因數和倍數的過程中,你有什么發(fā)現?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數的最小因數是1,最大因數是它本身。
(2)一個數的最小倍數是它本身,沒有最大倍數。
(3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
1、指導學生完成教材第7~8頁練習二第3~8題及思考題。
學生獨立完成全部練習后教師組織學生進行集體訂正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。
(3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。
2、利用求倍數的方法解決生活中的實際問題。
理解題意,分析解答。
教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5個地數,也正好數完,說明西瓜的個數是5的倍數,所以西瓜的個數同時是2和5的倍數。
交流匯報:2的倍數有2,4,6,8,10,12,14,16,18,20,…。
5的倍數有5,10,15,20,25,30,…。
2和5共同的倍數有10,20,…所以2和5共同的倍數最小的是10。
答:這些西瓜最少有10個。
1、師:通過本節(jié)課的學習,你有什么收獲?(學生交流)。
2、讓學生自學“你知道嗎?”
2×1=22÷2=1。
2×2=44÷2=2。
2×3=66÷2=3。
2×4=88÷2=4。
2的倍數有2,4,6,……。
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
因數與倍數的課堂筆記篇十二
《因數與倍數》這章內容包括:因數和倍數;2,5,3的倍數特征;質數和合數,這些知識是在學生已經掌握了整數知識的基礎上,進一步探索整數的性質,屬于初等數論的基本內容,教材中首先用乘法算式直接給出了因數和倍數的概念,讓學生明確因數與倍數的相互依存關系;再此基礎上,讓學生根據已有的生活經驗探索2,3,5的倍數特征,其中在掌握了2的倍數的特征基礎上,又安排了偶數和奇數的概念;然后進一步探討因數和倍數的規(guī)律中認識質數和合數。本單元的知識內容比較抽象,概念也比較多,教材中恰當地運用了生活實例或具體情境來進行教學,培養(yǎng)學生的探究意識和抽象思維能力。通過這次復習,使學生頭腦里形成一個系統(tǒng)的知識網絡。
2、教學目標。
知識目標:
歸納整理“因數與倍數”的有關概念,理解并掌握概念間內在聯(lián)系,形成認知結構。
技能目標:
親歷數學知識的整理過程,培養(yǎng)學生的觀察、分析、比較、概括、判斷等邏輯思維能力。
情感目標:
在整理和復習過程中,培養(yǎng)學生合作、交流的意識,滲透事物間互相聯(lián)系,互相依存的辨證思想。
3、教學重點。
概念間的聯(lián)系和發(fā)展,運用所學知識解決問題。
4、教學難點。
歸納和整理知識點,在整理中構建“因數與倍數”的知識網絡。
目標應該清晰簡明:
(1)形成知識網絡。
(2)查缺補漏。
(3)綜合運用知識。
(4)解決實際問題。
1、學生已經掌握了整數的有關知識,有一定的知識作為基礎;
3、對于概念的理解,要引導學生用聯(lián)系的觀點去掌握知識,不能死記硬背,機械地記憶概念和結論。
1、加強對概念之間關系的梳理,引導學生用聯(lián)系的觀點,從本質上理解和掌握知識,避免死記硬背。
2、教師要恰當利用生活實例或具體情境,充分運用直觀手段溝通知識間的聯(lián)系,使學生能夠有條理,有根據地進行思考和分析。
3、根據學生的認知特點,小組合作復習,讓學生在交流探索中掌握知識,培養(yǎng)抽象思維能力。
概念的教學,對學生而言,抽象且枯燥乏味,學生掌握這部分知識難度系數較大,所以課前要作好鋪墊,要做好準備,還要精心設計練習題。我在設計中先讓學生通過創(chuàng)設情境回顧梳理本單元的概念,以培養(yǎng)學生概括知識的能力,然后加以練習,在練習中明晰概念,深化理解,強調重難點。
1、教師教學環(huán)節(jié):建立知識網絡——鞏固解題方法——強調重難點。
2、學生學習環(huán)節(jié):分組整理知識點——明確重難點——鞏固知識點。
環(huán)節(jié)一:創(chuàng)設情境,激趣導入。
讓學生用因數與倍數這一章知識,描述一下4和5。(設計意圖讓學生對本單元這些概念進行回顧)。
環(huán)節(jié)二:概念梳理,形成結構圖。
這個環(huán)節(jié)教師引導學生一起根據這些有關數的概念及它們之間的聯(lián)系,把這些零散的概念,知識作一次梳理,把它整理成一個比較系統(tǒng)的知識網絡圖,也就是我的板書設計。(設計意圖:一看網絡圖,使學生腦海里凌亂的知識一下子一目了然,有助于學生理解這些概念,弄清它們之間的關系,并能培養(yǎng)學生梳理知識的能力。)。
環(huán)節(jié)三:綜合應用,知識內化。
通過填空、判斷、破譯手機號碼等技能訓練題,使學生將本單元知識內化,提高綜合運用的能力。
環(huán)節(jié)四:評價完善,課堂總結。
(設計意圖:關注學生的情感體驗,通過自我評價的方式,使學生學會客觀,公正地評價自己的學習行為,學習態(tài)度,從中收獲積極的情感體驗。)。
因數與倍數的課堂筆記篇十三
教學內容:
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
教學目標:
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發(fā)展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
教學重點:
整理、應用因數和倍數的知識。
教學難點:
應用概念正確判斷、推理。
教學過程:
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發(fā)現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發(fā)現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節(jié)課主要復習的哪些內容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
因數與倍數的課堂筆記篇十四
(一)教學內容分析
本課教學內容是國標蘇教版小學數學四年級(下冊)第九單元的第一課時,教材第70~72頁。
例1通過用12個同樣大的正方形拼成不同長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數和因數的意義。例2教學找一個數的倍數,并結合“試一試”引導發(fā)現一個數倍數的特征。例3教學找一個數的因數,再結合“試一試”引導發(fā)現一個數因數的特征。
(二)教學對象分析
在學習本單元之前,學生已經分階段認識了百以內、千以內、萬以內、億以內以及一些整億的數。較為系統(tǒng)地掌握了十進制計數法,同時也基本完成了整數四則運算的學習。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(三)教學環(huán)境分析
這節(jié)課,我采用“活動單”導學模式,依托多媒體互動視頻教學系統(tǒng)來開展各項活動,力求通過多媒體互動視頻教學系統(tǒng)將抽象的概念形象具體地呈現出來,將學生操作和思維清晰地展示出來,從而使學生更好地理解和掌握本節(jié)課的學習內容。
知識技能:理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
數學思考:初步意識到可以從一個數的角度來研究非零自然數的特征及其相互關系。
解決問題:在探索一個數的倍數和因數的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
情感態(tài)度:讓學生學會用數學的眼光觀察生活、思考問題,能積極參與對數學問題的探究活動,真真切切地體驗學習數學的快樂和價值。
三、教學重點、難點
理解倍數和因數的含義,能按要求找出一個數的倍數和因數。
整合點1:用圖像聲音創(chuàng)設情境
第一步,情境導入。我運用多媒體創(chuàng)設了幫助神探柯南破譯密碼的問題情境,通過這樣的問題,激發(fā)學生的探究欲望。在突出“倍數”和“因數”這兩個關鍵詞之后,板書課題,揭示本節(jié)課的教學內容。
整合點2:用直觀演示深化體驗
在“建立概念”部分,通過這樣幾個層次,進行教學。學生根據活動要求操作思考,我把學生的操作情況通過攝像頭整體投射到屏幕上,根據學生的匯報把相應的組滿屏顯示,并把各種拼法及對應的算式剪切入電子白板中,為下一步教學做好準備。通過旋轉操作,讓學生直觀感受到這樣的兩個圖形代表同一種拼法。根據學生得出的乘法算式,拖出本節(jié)課的兩個概念,并讓學生舉一反三,說說這兩個算式中數字間的倍數和因數關系。
整合點3:用動態(tài)展示突出本質
在“應用概念”部分,通過這樣幾個環(huán)節(jié)展開教學。首先讓學生自己對這些問題進行探索,在學生匯報找到的3的倍數時,有選擇性地進行截屏,同時展示學生多樣化的方法,讓學生比較、辨析、優(yōu)化,建立有序地尋找一個數倍數的方法。根據3個實例,歸納倍數的特征,我使用白板的圈畫功能,形象地突出了倍數的特點,突破了難點。
接著教學找一個數因數的方法,歸納因數的特征。在學生獨立思考、初步探究后,我將學生中兩種典型的想法,同時呈現在白板上,這樣學生的思維過程就清晰地展示了出來,在此基礎上點撥提升,通過層技術顯示幾乘幾等于36和36除以幾等于幾,這兩個一般性的算式,并通過圈畫突出列舉的有序性,強調“成對找,分開寫”的口訣。接著歸納因數的特征,我仍使用白板的圈畫功能,突顯了因數的特征。新授結束后,通過這樣的練習,讓學生自己在白板上操作,及時進行方法的鞏固。
由于本節(jié)課的知識點比較多,所以在回顧總結時,我通過重點畫面的回放,幫助學生梳理、回顧本節(jié)課的學習內容,再讓學生用本節(jié)課所學知識解決課始的問題,有問有答,前后呼應。最后進行檢測反饋。
多媒體互動視頻教學系統(tǒng)有著強大的人機交互功能和便捷的信息采集功能,能夠將課堂中的生成性資源即時保存,隨時調用。在本節(jié)課中,學生操作、探究得到的各種生成性資源被有選擇地展現出來,在此基礎上點撥提升,言之有物、針對性強;而且這些生成性資源還是下一環(huán)節(jié)必要的教學素材,這樣環(huán)環(huán)相扣、前后貫通,一步步引領學生走進倍數和因數的世界。
因數與倍數的課堂筆記篇十五
(非零自然數中)
1×36=3636÷1=3636÷36=1
2×18=3636÷2=1836÷18=2
3×12=3636÷3=1236÷12=3
4×9=3636÷4=936÷9=4
6×6=3636÷6=6
36的因數有:1、2、3、4、6、9、12、18、36.
因數與倍數的課堂筆記篇十六
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發(fā)現和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數學與生活的聯(lián)系。
1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數和最小公倍數練習)。
2、填空。
5的倍數有:()。
7的'倍數有:()。
5和7的公倍數有:()。
5和7的最小公倍數是:()。
3、完成練習四第5題。
(1)理解題意,獨立找出每組數的最小公倍數。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數的最小公倍數,看看有什么發(fā)現?
每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?
(4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)。
在有些情況下,兩個數的最小公倍數是這兩個數的乘積。
4、完成練習四第6題。
你能運用上一題的規(guī)律直接寫出每題中兩個數的最小公倍數嗎?
交流,匯報。
說說你是怎么想的?
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)。
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)
通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節(jié)課的收獲。
因數與倍數的課堂筆記篇十七
新教材在引入倍數和因數概念時與以往的老教材有所不同,比如在認識“因數、倍數”時,不再運用整除的概念為基礎,引出因數和倍數,而是直接從乘法算式引出因數和倍數的概念,目的是減去“整除”的數學化定義,降低學生的認知難度,雖然課本沒出現“整除”一詞,但本質上仍是以整除為基礎?;谝陨险J識,為了調動學生學習的積極性,提高學生課堂活動的參與性,我給這節(jié)課設計了四個教學環(huán)節(jié):
良好的開頭是成功的一半。課前通過輕松、愉快的談話引入,說明“一個人是好朋友”這樣的關系不能成立,從而為說清楚“倍數”和“因數”這兩個好朋友之間的關系打下基礎,對感知倍數和因數相互依存的關系進行有效的滲透和拓展。其次引入數學中自然數和自然數之間也有相互依存的關系,初步體會數和數的對應關系,既拉近了數學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。
新課伊始,直接由哪兩個數相乘得12引入,教學因數倍數的概念。因數和倍數是比較抽象的概念,不要讓學生去探究,學生也不可能探究出來,這就需要教師教,教時要結合具體算式講。教師講完之后,要讓學生結合其它的算式進行練習,給學生一個舉一反三的機會。因此,我首先根據算式介紹倍數和因數的意義,然后讓學生根據其余兩道乘法算式模仿的說一說,對于特殊的“12是12的因數,12是12的倍數”教師引導概括:一個數是它本身的因數也是倍數。然后通過除法算式加深因數倍數的意義,讓學生充分的說一說。這里老師引導“能說6是因數,12是倍數嗎?通過對反例的辨析,充分感受倍數和因數是相互依存的,使學生的感受更加深刻。讓學生明確:因數和倍數是相互的,是有所指的,是兩個自然數之間的關系,不能單純的說6是因數或12是倍數,應說6是12的因數,12是6的倍數。
教材把倍數和因數的意義以及找一個數的倍數和因數合在一個課時教學的,課的容量大、內容多。怎樣通過有效的課堂,真正使孩子理解倍數和因數的意義,并且能夠有序、完整地找一個數的`因數和倍數,就成了本節(jié)課的教學重點。其中,有序完整的找一個數的因數,既是重點更是難點。教學中我結合得到的三道乘法算式,教師半扶半放的引導學生找出12的所有因數。有了找12的因數的例子為依托,正好可以為找一個數的因數提供了思維的平臺,找一個數的倍數比較容易,放在后面可以少投入些時間。
”從學生的角度看問題是教學取得實效的關鍵“。本環(huán)節(jié)對學生可能出現的情況做了充分的預設,并通過兩次針對性的比較,使學生學會靈活地、有序地思考,及時引導學生用自己的語言總結找一個數因數的方法。應該說,找出24的幾個因數并不難,難就難在找出24的所有因數。教學中,不是急切認定結果,也不是把方法簡單地告訴學生,而是讓學生獨立探究,在作業(yè)紙上獨立寫出24的所有因數,教師則及時巡視并請學生將各種情況反饋。有用乘法找的,有用除法找的,有有序找的,也有無序找而有遺漏的。
教師引導學生對有序和無序找的作了比較,學生在比較、交流中感悟到有序思考的必要性和科學性。在學和議的環(huán)節(jié),學生交流的過程應該是相互補充、相互接納的過程,是對學習內容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺正方形的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。這部分教學,我給學生足夠的時間,讓他們認真地思考、充分地交流、相互評價。學生在這樣的過程中親歷了方法探究的過程,自主構建了知識體系。
接著通過練習及時鞏固找因數的方法。最后通過觀察比較三個數的所有因數,發(fā)現一個數的因數的特征時,讓學生先在小組里說一說,再用自己的語言總結,而找出因數的特征。從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。
因數與倍數的課堂筆記篇一
(1)能直接在方格圖上,數出相關圖形的面積。
(2)能利用分割的方法,將較復雜的圖形轉化為簡單的圖形,并用較簡單的方法計算面積。
2、過程與方法
(1)在解決問題的過程中,體會策略、方法的多樣性。
(2)學會與人交流思維過程與結果。
3、情感態(tài)度與價值觀
積極參與數學學習活動,體驗數學活動充滿著探索、體驗數學與日常生活密切相關。
1、重點是指導學生如何將圖形進行分割,從而讓學生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。
2、借助圖形,讓學生動手,自主探索、合作交流解決問題的方法。
一、創(chuàng)設情境、揭示新課。
我要說班里每位同學都是優(yōu)秀的設計師!因為大家都在設計著自己美好的將來,所以在很用功的學習。希望大家繼續(xù)努力,使自己美好的設計成為現實。下面我們來看一看,我們的同行——一位地毯圖案設計師,設計的圖案。
展示地毯上的圖形,讓學生仔細觀察圖形特點,說發(fā)現。
地毯是正方形,邊長為14米藍色部分圖形是對稱的,……
師:看這副地毯圖,請你提出數學問題。
根據學生的回答展示問題:“地毯上藍色部分的面積是多少?”
師板書課題:地毯上的圖形面積
二、自主探索、學習新知
如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?
1、學生獨立解決問題
要求學生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。
2、小組內交流、討論
3、班內反饋
請學生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學生說得合理都給以肯定。
學生的答案也許有:
(1)直接一個一個地數,為了不重復,在圖上編號;(數方格法)
(2)因為這個圖形是對稱的,所以平均分成4份,先數出一份中藍色的面積,再乘4;(化整為零法)
(3)用總正方形面積減去白色部分的面積;(大減小法)
(4)將中間8個藍色小正方形轉移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉移填補法)
4、學生總結求藍色部分面積的方法。
三、鞏固練習、拓展運用(課本第19頁練一練)
1、第1題
(1)學生獨立思考,求圖1的面積。
(2)說一說計算圖形面積的方法。引導學生了解“不滿一格的當作半格數”。
2、第2題
獨立解決后班內反饋。
3、第3題
(1)學生獨立填空。求出每組圖形的面積。學生完成后班內交流反饋答案。
(2)學生觀察結果,說發(fā)現。
第(1)題的4個圖形面積分別為1、2、3、4的平方數;第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。
四、全課小結,課后拓展
今天我們進行了那些活動,你收獲了什么?
師:對于計算方格圖中規(guī)則圖形的面積,我們可以分割,可以直接數,可以“大減小”,還可以轉移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數學課上我們將繼續(xù)學習。課后,有興趣的同學可以在空白方格紙上設計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。
因數與倍數的課堂筆記篇二
[教學內容]。
數的世界。
[教學目標]。
1、結合具體情境,認識自然數和整數,聯(lián)系乘法認識倍數和因數。??。
2、探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數.
3.培養(yǎng)學生綜合應用的能力。
教具準備。
多媒體課件、圖片。
[教學重、難點]。
探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數。
[教學過程]。
創(chuàng)設“水果店”的情境,呈現了生活中的數有自然數、負數、小數。在比較中認識自然數、整數,使對數的認識進一步系統(tǒng)化。
先讓學生觀察情境圖,說說圖中有哪些數,并給它們分類。
學生匯報觀察結果,通過比較認識自然數、整數,使學生對數的認識進一步系統(tǒng)化。
1、在解決書上提出的問題的過程中引出算式。
5×4=20(元)。
以這個乘法算式為例說明倍數和因數的含義,即20是4的倍數,20也是5的倍數,4是20的因數,5也是20的因數。引導學生認識倍數與因數,體會倍數與因數的含義。
在利用乘法算式說明倍數和因數的含義的基礎上,出示一個除法算式,如:18÷6=3啟發(fā)學生思考:根據整數除法算式能不能確定兩個數之間的倍數關系。
說明:在研究倍數和因數,范圍限制為不是零的自然數。
2、你寫我說。
讓學生同桌間互相寫算式,再說一說。算式可以是乘法算式,也可以是除法算式。
三、找一找。
1、判斷題目中給的數是不是7的倍數。
先讓學生用自己的方法判斷,再組織學生交流,使學生逐步體會可以通過想乘法算式或除法算式的方法來判斷。
2、找7的倍數:
四、練一練:
第2題:先讓學生自己找一找4的倍數和6的倍數,并用不同的符號做好記號。然后組織學生交流,并讓學生說說找倍數的方法。最后,說說哪幾個數既是???4的倍數有是6的倍數。
第3題:先讓學生獨立寫一寫,再組織學生交流各自的方法,并在交流比較的過程中體會怎樣做到不重復、不遺漏。體會到像這樣找一個數的倍數,一般用乘法想比較方便。
[板書設計]。
像0、1、2、3、4、5、…這樣的數是自然數。
像-3、-2、-1、0、1、2、…這樣的數是整數。
5×4=20(元)??????20是4和5的倍數。
第2課時。
[教學內容]。
2、5的倍數特征。
[教學目標]。
1、經歷探索2、5倍數的特征的過程,理解2、5倍數的特征,能判斷一個數是不是2或5的倍數。
2、知道奇數、偶數的含義,能判斷一個數是奇數或是偶數。
3、在觀察、猜測和討論過程中,提高探究問題的能力。
[教學重、難點]。
探索2,5的倍數的特征。
[教學準備]。
多媒體課件1到100的數字表格。
[教學過程]。
一、5的倍數的特征的探究。
讓學生在100以內的數表中找出5的倍數,用自己的方式做記號,并觀察、思考5的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納。
5的倍數的特征:個位上是0或5的數是5的倍數。
試一試:
嘗試用5的倍數特征來判斷一個數是不是5的倍數。
二、2的倍數的特征的探究。
讓學生在100以內的數表中找出2的倍數,用自己的方式做記號,并觀察、思考2的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納2的倍數的特征:
個位上是0、2、4、6、8的數是2的倍數。
在學生理解2的倍數的特征后再揭示偶數、奇數的含義,并進行你問我答的。
判斷練習。
偶數:是2的倍數的數叫做偶數。
奇數:不是2的倍數的數叫做奇數。
四、練一練:
第2題:引導學生先獨立思考,然后組織學生交流自己的思考方法。在引導學生判斷時,應根據2、5的倍數特征說明理由。如“因為85不是2的倍數,所以不能正好裝完”;又如:“因為85是5的倍數,所以能正好裝完?!?BR> 五、數學游戲:
這是圍繞“2、5的倍數的特征”設計的數學游戲,通過游戲加深學生對2、5的倍數的特征的理解。
[板書設計]。
2、5的倍數的特征。
5的倍數的特征:個位上是0或5的數是5的倍數。
2的倍數的特征:個位上是0、2、4、6、8的數是2的倍數。
是2的倍數的數叫偶數。
不是2的倍數的數叫奇數。
第3課時。
[教學內容]。
[教學目標]。
1、經歷探索3倍數的特征的過程,理解3倍數的特征,能判斷一個數是不是3的倍數。
2、發(fā)展分析、比較、猜測、驗證的能力。
3、滲透集合思想和不完全歸納法。
[教學重、難點]發(fā)展分析、比較、猜測、驗證的能力。
[教具準備]。
多媒體課件和1到100的數字表格。
[教學過程]。
一、3的倍數的特征的猜想。
我們研究了2、5的倍數的特征,那么3的倍數有什么特征呢?引導學生提出猜想。學生可能會猜想:個位上能被3整除的數能被3整除等,老師引導學生進行討論、研究。
二、3的倍數的特征的探究。
3的倍數的特征每個數位的各個數字加起來是3的倍數。
試一試:
嘗試用3的倍數特征來判斷一個數是不是3的倍數。
三、練一練:
第2題:
讓學生準備幾張卡片:3、0、4、5邊擺邊想,再交流討論思考的過程。
(1)30、45、54(2)30、54?(3)30、45?(4)30。
四、實踐活動:
[板書設計]。
3的倍數的特征:這個數各位數字之和是3的倍數。
第4課時。
[教學目標]。
1、用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
2、在1-100的自然數中,能找到某個自然數的所有因數。
3、培養(yǎng)學生的分析能力和不完全歸納的數學思想。
[教學重、難點]。
用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
1。動手拼長方形。
用12個小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,再交流不同的拼法。
學生一般會用乘法思路思考:哪兩個數相乘等于12?然后找出:
1×12、2×6、3×4。這種思路就是找一個數的因數的基本方法,要引導學生關注有序思考,并體會一個數的因數個數是有限的。
2。試一試。
找因數的基本練習:找9和15的因數。讓學生獨立完成,注意引導學生有序思考。
3.練一練。
第2題:先讓學生自己找一找18的因數和21的因數,并用不同的符號做好記號,然后讓學生說說找因數的方法。最后,說說哪幾個數既是18的因數,又是21的因數。
第3題;
利用數形結合,進一步體會找因數的方法。
第5題:可以引導學生用找因數的方法進行思考,鼓勵學生將想到的排列方法列出來,在交流的基礎上,使學生經歷有條理的思考過程。48=1×48=2×24=3×16=4×12=6×8,48有10個因數,就有10種排法。如每行12人,排4行;每行4人,排12行等。37只有兩個因數,只有兩種排法。
【板書設計】。
找因數。
面積是12的長方形有:6種圖形????????1×12=12。
2×6=12。
3×4=12。
第5課時。
[教學內容]找質數。
[教學目標]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
2、能正確判斷質數和合數。
3、在研究質數的過程中豐富對數學發(fā)展的認識,感受數學文化的魅力。
[教學重、難點]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
一、動手拼長方形,揭示質數、合數的意義。
1、用小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,邊拼邊填寫書上的表格。
2、引導學生觀察并提出問題:“這些小正方形有的只能拼成一種長方形,有的能拼成兩種或兩種以上的長方形,為什么?”
3、揭示質數、合數的意義。
組織學生觀察、比較、分析逐步發(fā)現特征,并把幾個自然數分類,揭示質數和合數的意義。
從概念出發(fā)理解“1既不是質數,也不是合數。”
二、討論判斷質數、合數的方法。
1、嘗試判斷:2、8、9、13、51、37、91、52是質數還是合數。
先讓學生獨立判斷,再組織交流“怎樣判斷一個數是質數還是合數”
2、歸納方法:
只要找到一個1和本身以外的因數,這個數就是合數。如果除了1和它本身找不到其他的因數,這個數就是質數。
三、探索活動:
第1題:
用“篩法”找100以內的質數。引導學生有步驟、有目的地操作、觀察和交流,找出100以內的質數。
介紹這種方法是兩千多年前希臘數學家提出的研究質數的方法,稱為“篩法”?,F在隨著計算機的發(fā)展,這種操作方法可以編成程序讓計算機進行操作。這樣,可以使學生了解數學發(fā)展的歷史,感受到數學文化的魅力,豐富學生對數學發(fā)展的認識,激起學生探究知識的欲望和興趣。
第2題:
本題引導學生通過操作、觀察,探索規(guī)律。
第(1)、(2)題,學生會發(fā)現這些質數都分布在第1列和第5列,為什么?
[板書設計]。
找質數。
一個數除了1和它本身以外還有別的因數,這個數就叫合數。?????????????????????????????一個數只有1和它本身兩個因數,這個數叫做質數。
1既不是質數,也不是合數。
第6課時。
[教學內容]數的奇偶性。
[教學目標]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學重、難點]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現規(guī)律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發(fā)現加法中數的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
[教學過程]。
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數、偶數相加的規(guī)律。
[
[板書設計]。
數的奇偶性。
例子:???????????????????結論:
因數與倍數的課堂筆記篇三
(1)教材的地位和前后關系:在學習本單元之前,學生已經認識了百以內、千以內、萬以內、億以內以及一些整億的數。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(2)教學目標:
知識、技能目標:
1、讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
情感、價值目標:
2、讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心。
(3)教學重點:
理解倍數和因數的含義與方法
(4)教學難點:
掌握找一個數的倍數和因數的方法。
首先從學生的操作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數和因數的概念。
其次以學生討論、交流、相互評價,促成學生對找一個數的倍數、一個數的因數的方法進行優(yōu)化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
(1)合作交流、揭示主題
用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。
(2)教學概念、正反促成
利用橫里讀、豎里讀,形成了比較系統(tǒng)的知識概念,并及時出示整個前提:是在不含0的自然數,讓學生自己舉例,示范說、相互說,最后以教師舉學生不容易想到了例子:4×4=16,18÷6=3,促成學生不僅從乘法的角度去思考,而且也可以從除法的角度進行,也為后面找一個數的因數的方法做好伏筆。
(3)設疑,置疑,激發(fā)學生的反思力度
在教學找一個數的倍數時,“才說到12、18是3的倍數(板書:3的倍數),3的倍數是不是只有12、18這兩個數呢?”組織交流:3的倍數有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?”
(4)判斷中進行教學內容的遞深,形成了反思、學習和強化的整個學習過程。在學生做出“6是倍數”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數的因數”以談話導入,形成知識相互的聯(lián)系與區(qū)別,談話:必須說清誰是誰的倍數,誰是誰的因數。所以6可能是某些數的倍數,也可能是某些數的因數,那我們就來找一個數的因數。你能找出36所有的因數嗎?”
(5)討論互評,自主學習
放手讓學生學習找一個數的因數,從無序到有序,從自尋到互學,請學生板書,
學生評價,“提問:你是用什么方法找到一個數的因數,可以介紹給大家嗎?還有其他方法嗎?”
1×36=36
36÷1=36
2×18=36
36÷2=18
3×12=36
36÷3=12
4×9=363
6÷4=9
6×6=36
36÷6=6
(6)自主不失指導,掌握不失總結
如:提問:5為什么不是36的因數?(因為36÷5不能整除,有余數)
小結:不能被這個數整除的數就不是這個數的因數。
小結:我們即可以從乘法算式,也可以從除法算式找到一個數的因數。
提問:那對于一個數的因數從36的因數、15的因數這兩個例子又有什么發(fā)現?
總結:對于一個數的倍數和因數,它們是不同的,但通過乘法算式、除法算式又是相互依存的、相互聯(lián)系的。
xxxx
因數與倍數的課堂筆記篇四
1、使學生理解質數和合數的概念,能正確地判斷一個數是質數還是合數。
2、培養(yǎng)學生觀察、比較、抽象、慨括的能力。
3、培養(yǎng)學生自主探究的精神和獨立思考的能力。教學重點:質數和合效的概念。
質數、臺數、濟數、偶數的區(qū)別
給教室里的人分類。體會:同樣的事物,依據不問的分類標準,可以有多種小_的分類方法。明確:分類的際準很重要。
說一說,在我們學習的空間,你可以得到那些數?(要求與同學說的盡也不重復)
給這些自然數分類。根據自然數能不能被2整除,可以分成新數和偶數兩類。
板書對應的集合圖。
自然數
(能不能被2整除)
把學生列舉的數填寫在對應的集合圈里。
問:看了集合圖,你想說什么么?(學生看圖說自己的想法,復習奇數和偶數的有關知識)
說明:這是一種有價值的分類方法,在以后的學習中很有用。
問:想不想學一種新的分類方法?關于新的分類方法,你想知道些什么?
今天我們就用找約數的方法來給自然數分類。
復習:什么叫約數?怎樣找一個數所有的約數?
同桌合作。找出列舉的各數的所有的約數。(同時板演)
引導學生觀察:觀察以上各數所含的數的個數,你能把它們分成幾種情況‘!
根據學生的回答板書。
自然數
(約數的個數)
(只有兩個約數)(有3個或3個以上的約數)
引導學生思考:只含有兩個約數的,這兩個約數有什么特點?引出約數的概念。
明確:這是一種新的分類方法??磸S集合圈,你想說什么?(學生看圖說自己的想法,鞏固寺數陽臺數的知識)
猜一猜:奇數有多少個?合數呢?
明確:因為自然數的個數是無限的,所以,新數陽偶數的個數也是無限的。運用新知,解決問題。
出示例1下面各數,哪些是質數?哪些是合數?
15 28 31 53 77 89 1ll
學生獨立完成。
問:你是怎么判斷的?
明確:可以找出每個數所有的約數,再根據質數和合數的意義來判斷;一個數,只有找到1和它本身以外的第三個約束,就能判斷這個數是合數還是質數。不必找出所有的約數來,這樣可以提高判斷的效率。
說明:判斷一個數是不是質數還可以查表。100以內的質數比較常用,看書本上的100以內的質數表。用質數表檢查對例子1的判斷是否正確。
完成練一練。
1、堅持下面各數的約數的個數,指出哪些是質數哪些是合數,再用質數表檢查。
22 29 35 49 51 79 83
2、出示2到50的數。先劃掉2的倍數,再依次劃掉3、5、7的倍數(但2、3、5、7本身不劃掉。)
學生操作后,提問:剩下的都是什么數?
告訴學生:古代的數學家就是用這樣的方法來找質數的。
學到這里,一種新的分類方法,你掌握了嗎?學生回答:相機揭示課題,質數和合數
討論:質數、合數、奇數、偶數之間是這樣的關系呢?
(略)。
因數與倍數的課堂筆記篇五
尊敬的各位專家、老師:
大家好!我說課的內容是蘇教版小學數學四年級下冊第70—73頁:《倍數和因數》。這節(jié)課教學倍數和因數的認識,學習找一個自然數的倍數和因數。教材安排了三道例題、兩道“試一試”及相應的“想想做做”,例1通過用12個同樣大的正方形拼成不同的長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數和因數的意義。例2教學找一個數的倍數,并結合“試一試”引導發(fā)現一個數倍數的特征。例3教學找一個數的因數,再結合“試一試”引導發(fā)現一個數因數的特征。通過本節(jié)課的學習,要達到以下教學目標:
1、通過操作活動得出相應的乘除算式,幫助學生理解倍數和因數的意義;探索求一個數的倍數和因數的方法,發(fā)現一個數倍數和因數的某些特征。
2、使學生在認識倍數和因數以及探索一個數的倍數或者因數的過程中,進一步體會數學知識之間的內在聯(lián)系,提高數學思考的水平。
教學重點是理解倍數和因數的含義,掌握找一個數的倍數和因數的方法。
教學難點是掌握找一個數的倍數和因數的方法。
為了順利完成教學目標,有效突出重點,突破難點,在尊重教材的基礎上,我打算根據學生的認知特點和心理特征,通過激趣、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣,讓學生通過獨立思考、合作交流進行自主探索,教師及時引導學生掌握數學思考的方法。
基于以上認識我預設了如下幾個教學環(huán)節(jié):
首先和學生交流生活中的各種各樣的關系,“比如你們和老師是什么關系?你和媽媽呢?其次引入數學中自然數和自然數之間也有各種關系,初步體會數和數的對應關系,既拉近了數學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。
我準備分三個層次進行教學。
(1)操作體驗,初步感知倍數和因數的意義。通過操作我們能發(fā)現許多的知識。請同學們拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著那些不同的乘法算式。再讓學生根據算式猜一猜“他可能是怎么擺的”,然后電腦演示相應的操作。用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。學生充分經歷了“由形到數、再由數到形”的過程,既為倍數和因數概念的提出積累了素材,又初步感知倍數和因數的關系,為正確理解概念提供了幫助。
(2)在具體的乘法算式中,理解倍數和因意義。值得注意的是,教材沒有給出抽象的意義,而是結合乘法算式進行直觀的描述,這樣不僅降低了難度,而且為學生的后續(xù)學習拓展了空間。因此,教師首先根據算式介紹倍數和因數的意義,然后讓學生根據其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數,12是倍數嗎?這一反例的教學,充分感受倍數和因數是相互依存的。
(3)及時練習。我把“想想做做”第1題改為學生自己出題,說說誰是誰的倍數,誰是誰的因數,既達到了鞏固的目的,來自學生自身的材料又更加真實,學生更容易接受。同時考慮到學生受思維定勢的影響,可能所舉例子都是乘法算式,教師就需及時有效“介入”比如,“24除以3=8”,促成學生不僅從乘法的角度去思考而且也可以從除法的角度進行,為后面找一個數的因數做好伏筆。
分兩個層次進行,首先教學找一個數的倍數。我將教學過程設計成了一個個問題鏈,什么樣的數是3的倍數?,怎樣找才能有條理?比一比誰找的倍數多?能把3的倍數全找完嗎,應該怎樣表示問題的答案?你有什么竅門找一個數的倍數?在學生自主探索的基礎上,小組合作,全班交流,學生之間積極互動,“捕捉”對方的想法,完善自己的認知理解掌握找一個數倍數的方法并結合“試一試”,通過交流比較,發(fā)現“一個數的倍數的個數是無限的,一個數最小的倍數是它本身,沒有最大的倍數”。第二個層次教學找一個數的因數,相對于找一個數的倍數而言,找一個數的因數無疑難度增加了,在此環(huán)節(jié)中不必急于告訴學生方法,而是放手讓學生獨立思考,嘗試探索“從學生的角度看問題是教學取得實效的關鍵”對學生出現的情況我作了充分的預設:有的可能是用乘法想(乘積是36的兩個數是36的因數)有的可能是用除法想(除數和商都是36的因數)這兩種方法都出現一個問題:無序。從而導致重復、遺漏現象。為了解決問題,我再次放手,小組交流,,并在此基礎上讓學生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結,最后師生達成共識:按一定的順序一對對的找,找到兩個數接近為止。從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。由于一個數倍數特征的借鑒,一個數因數的特征放手讓學生自己總結。
因數與倍數的課堂筆記篇六
【知識點】:
1、認識自然數和整數,聯(lián)系乘法認識倍數與因數。
像0,1,2,3,4,5,6,…這樣的數是自然數。
像-3,-2,-1,0,1,2,3,…這樣的數是整數。
2、我們只在自然數(零除外)范圍內研究倍數和因數。
3、倍數與因數是相互依存的關系,要說清誰是誰的倍數,誰是誰的因數。
補充【知識點】:
一個數的倍數的個數是無限的。
探索活動(一)2,5的倍數的特征。
【知識點】:
1、2的倍數的特征。
個位上是0,2,4,6,8的數是2的倍數。
2、5的倍數的特征。
個位上是0或5的數是5的倍數。
3、偶數和奇數的定義。
是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
4、能判斷一個數是不是2或5的倍數。能判斷一個非零自然數是奇數或偶數。
補充【知識點】:
既是2的倍數,又是5的倍數的特征。個位上是0的數既是2的倍數,又是5的倍數。
探索活動(二)3的倍數的特征。
【知識點】:
1、3的倍數的特征。
一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。
2、能判斷一個數是不是3的倍數。
補充【知識點】:
1、同時是2和3的倍數的特征。
個位上的數是0,2,4,6,8,并且各個數位上的數字的和是3的倍數的數,既是2的倍數,又是3的倍數。
2、同時是3和5的倍數的特征。
個位上的數是0或5,并且各個數位上的數字的和是3的倍數的數,既是3的倍數,又是5的倍數。
3、同時是2,3和5的倍數的特征。
個位上的數是0,并且各個數位上的數字的和是3的倍數的數,既是2和5的倍數,又是3的倍數。
找因數。
【知識點】:
在1~100的自然數中,找出某個自然數的所有因數。方法:運用乘法算式,思考:哪兩個數相乘等于這個自然數。
補充【知識點】:
一個數的因數的個數是有限的。其中最小的因數是1,最大的因數是它本身。
找質數。
【知識點】:
一個數只有1和它本身兩個因數,這個數叫作質數。
一個數除了1和它本身以外還有別的因數,這個數叫作合數。
3、判斷一個數是質數還是合數的方法:
一般來說,首先可以用“2,5,3的倍數的特征”判斷這個數是否有因數2,5,3;如果還無法判斷,則可以用7,11等比較小的質數去試除,看有沒有因數7,11等。只要找到一個1和它本身以外的因數,就能肯定這個數是合數。如果除了1和它本身找不到其他因數,這個數就是質數。
數的奇偶性。
【知識點】:
1、運用“列表”“畫示意圖”等方法發(fā)現規(guī)律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發(fā)現“奇數次在北岸,偶數次在南岸”的規(guī)律。
2、能夠運用上面發(fā)現的數的奇偶性解決生活中的一些簡單問題。
3、通過計算發(fā)現奇數、偶數相加奇偶性變化的規(guī)律:
偶數+偶數=偶數奇數+奇數=偶數。
因數與倍數的課堂筆記篇七
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發(fā)展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
整理、應用因數和倍數的知識。
應用概念正確判斷、推理。
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發(fā)現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發(fā)現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節(jié)課主要復習的哪些內容?你有哪些收獲?
因數與倍數的課堂筆記篇八
《因數和倍數》這一堂課在各個版本中的內容和學習目標都存在著差異。今天聽了《因數和倍數》的不同上法,結合自己先前對教材的認識與設計,現在比較著來談談聽完課后的一些感想。
首先我說說這兩堂課教學內容上的差異。第一堂課安排的教學內容有三部分。第一部分是認識因數和倍數,指導學生正確描述因數和倍數。其次安排的教學內容是找一個數的因數和倍數。第三部分是了解因數和倍數以及一個數的最大因數和最小倍數的特性。第二堂課先建立了整除的概念,理清除盡和整除之間的關系,然后在整除的基礎上認識因數和倍數,最后讓學生學會描述因數和倍數。(即4句話:誰能被誰整除,誰能整除誰,誰是誰的倍數,誰是誰的約數。)。
接著我來說說自己的想法。
第一堂課的上法比較嚴謹,通過教師的傳授和學生的練習,相信大多數學生都能認識因數和倍數并能正確描述,同時也會找一個數的因數和倍數,能根據因數和倍數的特性解決問題。完成了本課的技能目標。在課中,教師讓學生說得很充分,并有針對性的進行了練習,使學生扎實地掌握了知識,為后續(xù)的學習打下了結實的基礎。
在這一課的導入中,教師用乘算式,讓學生先說一說各部分的名稱,然后對7×3=21給出描述性的語句“我們說7是21的因數,3也是21的因數;21是7的倍數,21也是3的倍數?!边@個導入,除了在乘法里出現了因數這個詞和本課內容有關聯(lián)外,其他關系并不大,用這樣的練習作為切入點,它的用處并沒有體現。
其次,教師對學生提醒:“我們說的因數和倍數一般指的是整數,不包括0”,在這里,我覺得教師給出的定義一定要準確“我們說的因數和倍數都是指“0”以外的自然數?!闭f到這個0是否除外的問題,人教論壇上還有爭議,因此對這個問題暫不考慮。在判斷是否能說倍數和因數的練習題中,對于加和減題是否能說倍數和因數的判斷,我覺得沒有存在的必要。在這里教師設計的題“判斷8÷4=2,4和2是8的因數,8是4和2的倍數這句話的對錯”很有價值,讓學生感悟到不管是根據乘法還是除法算式都可以找到因數和倍數。
第三,在找36的因數中,教師對找的方法進行了指導,要一對一對有序地找。在這里教師可以繼續(xù)提問學生“找到什么時候停?”讓學生自然得出:找到兩個因數非常接近時就不用再找了。這樣一來對學生又是一個知識層面上的提高。
第四,在最后的鞏固練習中,有一題講到一個數的最大因數和最小倍數的和是20,問學生這個數是多少。這題是學生對因數和倍數特性的反饋,在這題完成后,我想到了一個練習題“一個數最小的倍數是18,找出這個數的其他因數”,這樣整合特性和找一個數的因數這兩個知識點。還有一題在數軸上面標出3的倍數,在數軸下面標出4的倍數,這里出現共同的點,這樣的話能否對公倍數適當地提點一下呢?讓學生留點疑問結束課堂教學,為后一課的學習埋下伏筆。
第二堂課的開始教師比較開放,讓學生想一個除法算式,然后把這些出發(fā)算式歸類,分類出除不盡和除盡,在除盡里再分出整除。這里充分發(fā)揮了學生的主體作用,教學的素材來源于學生自己,提高了學生的學習積極性。在對除盡的區(qū)分中,教師讓學生用語言來描述除盡,我覺得對學生來說只要會辨別就行了,不需要要準確的語言去定義概念。教師給出的整除的概念不夠嚴密,既然沒有向學生說明整除所說的數都不包括0,那么在定義給出時,應向學生說明除0以外的自然數。
因數與倍數的課堂筆記篇九
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節(jié)課的教學我把重點定位于理解因數和倍數的含義。
因數與倍數的課堂筆記篇十
1.理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法。
2.在探究的過程中體會數學知識之間的內在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
3.培養(yǎng)學生的探索意識以及熱愛數學學習的情感。
因數與倍數的課堂筆記篇十一
教材第6頁例3及練習二第3~8題及思考題。
1.通過學習,使學生能自主探究,找出求一個數的倍數的方法。
2.結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。
3.初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養(yǎng)學生概括、分析和比較的能力,使學生體會數學知識的內在聯(lián)系。
重點:掌握求一個數的倍數的方法。
難點:理解因數和倍數兩者之間的關系。
1、探索找倍數的方法。(教學例3)。
出示例3:2的倍數有哪些?
師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……。
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?
生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?(不能)。
師:為什么?(因為2的倍數有無數個)。
師:怎么辦?(用省略號)。
師:通過交流,你有什么發(fā)現?
引導學生初步體會2的倍數的個數是無限的。
追問:你能用集合圖表示2的倍數嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。
2、反思提煉。師:從前面找因數和倍數的過程中,你有什么發(fā)現?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數的最小因數是1,最大因數是它本身。
(2)一個數的最小倍數是它本身,沒有最大倍數。
(3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
1、指導學生完成教材第7~8頁練習二第3~8題及思考題。
學生獨立完成全部練習后教師組織學生進行集體訂正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。
(3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。
2、利用求倍數的方法解決生活中的實際問題。
理解題意,分析解答。
教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5個地數,也正好數完,說明西瓜的個數是5的倍數,所以西瓜的個數同時是2和5的倍數。
交流匯報:2的倍數有2,4,6,8,10,12,14,16,18,20,…。
5的倍數有5,10,15,20,25,30,…。
2和5共同的倍數有10,20,…所以2和5共同的倍數最小的是10。
答:這些西瓜最少有10個。
1、師:通過本節(jié)課的學習,你有什么收獲?(學生交流)。
2、讓學生自學“你知道嗎?”
2×1=22÷2=1。
2×2=44÷2=2。
2×3=66÷2=3。
2×4=88÷2=4。
2的倍數有2,4,6,……。
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
因數與倍數的課堂筆記篇十二
《因數與倍數》這章內容包括:因數和倍數;2,5,3的倍數特征;質數和合數,這些知識是在學生已經掌握了整數知識的基礎上,進一步探索整數的性質,屬于初等數論的基本內容,教材中首先用乘法算式直接給出了因數和倍數的概念,讓學生明確因數與倍數的相互依存關系;再此基礎上,讓學生根據已有的生活經驗探索2,3,5的倍數特征,其中在掌握了2的倍數的特征基礎上,又安排了偶數和奇數的概念;然后進一步探討因數和倍數的規(guī)律中認識質數和合數。本單元的知識內容比較抽象,概念也比較多,教材中恰當地運用了生活實例或具體情境來進行教學,培養(yǎng)學生的探究意識和抽象思維能力。通過這次復習,使學生頭腦里形成一個系統(tǒng)的知識網絡。
2、教學目標。
知識目標:
歸納整理“因數與倍數”的有關概念,理解并掌握概念間內在聯(lián)系,形成認知結構。
技能目標:
親歷數學知識的整理過程,培養(yǎng)學生的觀察、分析、比較、概括、判斷等邏輯思維能力。
情感目標:
在整理和復習過程中,培養(yǎng)學生合作、交流的意識,滲透事物間互相聯(lián)系,互相依存的辨證思想。
3、教學重點。
概念間的聯(lián)系和發(fā)展,運用所學知識解決問題。
4、教學難點。
歸納和整理知識點,在整理中構建“因數與倍數”的知識網絡。
目標應該清晰簡明:
(1)形成知識網絡。
(2)查缺補漏。
(3)綜合運用知識。
(4)解決實際問題。
1、學生已經掌握了整數的有關知識,有一定的知識作為基礎;
3、對于概念的理解,要引導學生用聯(lián)系的觀點去掌握知識,不能死記硬背,機械地記憶概念和結論。
1、加強對概念之間關系的梳理,引導學生用聯(lián)系的觀點,從本質上理解和掌握知識,避免死記硬背。
2、教師要恰當利用生活實例或具體情境,充分運用直觀手段溝通知識間的聯(lián)系,使學生能夠有條理,有根據地進行思考和分析。
3、根據學生的認知特點,小組合作復習,讓學生在交流探索中掌握知識,培養(yǎng)抽象思維能力。
概念的教學,對學生而言,抽象且枯燥乏味,學生掌握這部分知識難度系數較大,所以課前要作好鋪墊,要做好準備,還要精心設計練習題。我在設計中先讓學生通過創(chuàng)設情境回顧梳理本單元的概念,以培養(yǎng)學生概括知識的能力,然后加以練習,在練習中明晰概念,深化理解,強調重難點。
1、教師教學環(huán)節(jié):建立知識網絡——鞏固解題方法——強調重難點。
2、學生學習環(huán)節(jié):分組整理知識點——明確重難點——鞏固知識點。
環(huán)節(jié)一:創(chuàng)設情境,激趣導入。
讓學生用因數與倍數這一章知識,描述一下4和5。(設計意圖讓學生對本單元這些概念進行回顧)。
環(huán)節(jié)二:概念梳理,形成結構圖。
這個環(huán)節(jié)教師引導學生一起根據這些有關數的概念及它們之間的聯(lián)系,把這些零散的概念,知識作一次梳理,把它整理成一個比較系統(tǒng)的知識網絡圖,也就是我的板書設計。(設計意圖:一看網絡圖,使學生腦海里凌亂的知識一下子一目了然,有助于學生理解這些概念,弄清它們之間的關系,并能培養(yǎng)學生梳理知識的能力。)。
環(huán)節(jié)三:綜合應用,知識內化。
通過填空、判斷、破譯手機號碼等技能訓練題,使學生將本單元知識內化,提高綜合運用的能力。
環(huán)節(jié)四:評價完善,課堂總結。
(設計意圖:關注學生的情感體驗,通過自我評價的方式,使學生學會客觀,公正地評價自己的學習行為,學習態(tài)度,從中收獲積極的情感體驗。)。
因數與倍數的課堂筆記篇十三
教學內容:
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
教學目標:
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯(lián)系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發(fā)展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
教學重點:
整理、應用因數和倍數的知識。
教學難點:
應用概念正確判斷、推理。
教學過程:
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發(fā)現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發(fā)現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節(jié)課主要復習的哪些內容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
因數與倍數的課堂筆記篇十四
(一)教學內容分析
本課教學內容是國標蘇教版小學數學四年級(下冊)第九單元的第一課時,教材第70~72頁。
例1通過用12個同樣大的正方形拼成不同長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數和因數的意義。例2教學找一個數的倍數,并結合“試一試”引導發(fā)現一個數倍數的特征。例3教學找一個數的因數,再結合“試一試”引導發(fā)現一個數因數的特征。
(二)教學對象分析
在學習本單元之前,學生已經分階段認識了百以內、千以內、萬以內、億以內以及一些整億的數。較為系統(tǒng)地掌握了十進制計數法,同時也基本完成了整數四則運算的學習。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(三)教學環(huán)境分析
這節(jié)課,我采用“活動單”導學模式,依托多媒體互動視頻教學系統(tǒng)來開展各項活動,力求通過多媒體互動視頻教學系統(tǒng)將抽象的概念形象具體地呈現出來,將學生操作和思維清晰地展示出來,從而使學生更好地理解和掌握本節(jié)課的學習內容。
知識技能:理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發(fā)現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
數學思考:初步意識到可以從一個數的角度來研究非零自然數的特征及其相互關系。
解決問題:在探索一個數的倍數和因數的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
情感態(tài)度:讓學生學會用數學的眼光觀察生活、思考問題,能積極參與對數學問題的探究活動,真真切切地體驗學習數學的快樂和價值。
三、教學重點、難點
理解倍數和因數的含義,能按要求找出一個數的倍數和因數。
整合點1:用圖像聲音創(chuàng)設情境
第一步,情境導入。我運用多媒體創(chuàng)設了幫助神探柯南破譯密碼的問題情境,通過這樣的問題,激發(fā)學生的探究欲望。在突出“倍數”和“因數”這兩個關鍵詞之后,板書課題,揭示本節(jié)課的教學內容。
整合點2:用直觀演示深化體驗
在“建立概念”部分,通過這樣幾個層次,進行教學。學生根據活動要求操作思考,我把學生的操作情況通過攝像頭整體投射到屏幕上,根據學生的匯報把相應的組滿屏顯示,并把各種拼法及對應的算式剪切入電子白板中,為下一步教學做好準備。通過旋轉操作,讓學生直觀感受到這樣的兩個圖形代表同一種拼法。根據學生得出的乘法算式,拖出本節(jié)課的兩個概念,并讓學生舉一反三,說說這兩個算式中數字間的倍數和因數關系。
整合點3:用動態(tài)展示突出本質
在“應用概念”部分,通過這樣幾個環(huán)節(jié)展開教學。首先讓學生自己對這些問題進行探索,在學生匯報找到的3的倍數時,有選擇性地進行截屏,同時展示學生多樣化的方法,讓學生比較、辨析、優(yōu)化,建立有序地尋找一個數倍數的方法。根據3個實例,歸納倍數的特征,我使用白板的圈畫功能,形象地突出了倍數的特點,突破了難點。
接著教學找一個數因數的方法,歸納因數的特征。在學生獨立思考、初步探究后,我將學生中兩種典型的想法,同時呈現在白板上,這樣學生的思維過程就清晰地展示了出來,在此基礎上點撥提升,通過層技術顯示幾乘幾等于36和36除以幾等于幾,這兩個一般性的算式,并通過圈畫突出列舉的有序性,強調“成對找,分開寫”的口訣。接著歸納因數的特征,我仍使用白板的圈畫功能,突顯了因數的特征。新授結束后,通過這樣的練習,讓學生自己在白板上操作,及時進行方法的鞏固。
由于本節(jié)課的知識點比較多,所以在回顧總結時,我通過重點畫面的回放,幫助學生梳理、回顧本節(jié)課的學習內容,再讓學生用本節(jié)課所學知識解決課始的問題,有問有答,前后呼應。最后進行檢測反饋。
多媒體互動視頻教學系統(tǒng)有著強大的人機交互功能和便捷的信息采集功能,能夠將課堂中的生成性資源即時保存,隨時調用。在本節(jié)課中,學生操作、探究得到的各種生成性資源被有選擇地展現出來,在此基礎上點撥提升,言之有物、針對性強;而且這些生成性資源還是下一環(huán)節(jié)必要的教學素材,這樣環(huán)環(huán)相扣、前后貫通,一步步引領學生走進倍數和因數的世界。
因數與倍數的課堂筆記篇十五
(非零自然數中)
1×36=3636÷1=3636÷36=1
2×18=3636÷2=1836÷18=2
3×12=3636÷3=1236÷12=3
4×9=3636÷4=936÷9=4
6×6=3636÷6=6
36的因數有:1、2、3、4、6、9、12、18、36.
因數與倍數的課堂筆記篇十六
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發(fā)現和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發(fā)展學生與同伴合作交流的意識和能力,感受數學與生活的聯(lián)系。
1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數和最小公倍數練習)。
2、填空。
5的倍數有:()。
7的'倍數有:()。
5和7的公倍數有:()。
5和7的最小公倍數是:()。
3、完成練習四第5題。
(1)理解題意,獨立找出每組數的最小公倍數。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數的最小公倍數,看看有什么發(fā)現?
每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?
(4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)。
在有些情況下,兩個數的最小公倍數是這兩個數的乘積。
4、完成練習四第6題。
你能運用上一題的規(guī)律直接寫出每題中兩個數的最小公倍數嗎?
交流,匯報。
說說你是怎么想的?
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)。
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)
通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節(jié)課的收獲。
因數與倍數的課堂筆記篇十七
新教材在引入倍數和因數概念時與以往的老教材有所不同,比如在認識“因數、倍數”時,不再運用整除的概念為基礎,引出因數和倍數,而是直接從乘法算式引出因數和倍數的概念,目的是減去“整除”的數學化定義,降低學生的認知難度,雖然課本沒出現“整除”一詞,但本質上仍是以整除為基礎?;谝陨险J識,為了調動學生學習的積極性,提高學生課堂活動的參與性,我給這節(jié)課設計了四個教學環(huán)節(jié):
良好的開頭是成功的一半。課前通過輕松、愉快的談話引入,說明“一個人是好朋友”這樣的關系不能成立,從而為說清楚“倍數”和“因數”這兩個好朋友之間的關系打下基礎,對感知倍數和因數相互依存的關系進行有效的滲透和拓展。其次引入數學中自然數和自然數之間也有相互依存的關系,初步體會數和數的對應關系,既拉近了數學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。
新課伊始,直接由哪兩個數相乘得12引入,教學因數倍數的概念。因數和倍數是比較抽象的概念,不要讓學生去探究,學生也不可能探究出來,這就需要教師教,教時要結合具體算式講。教師講完之后,要讓學生結合其它的算式進行練習,給學生一個舉一反三的機會。因此,我首先根據算式介紹倍數和因數的意義,然后讓學生根據其余兩道乘法算式模仿的說一說,對于特殊的“12是12的因數,12是12的倍數”教師引導概括:一個數是它本身的因數也是倍數。然后通過除法算式加深因數倍數的意義,讓學生充分的說一說。這里老師引導“能說6是因數,12是倍數嗎?通過對反例的辨析,充分感受倍數和因數是相互依存的,使學生的感受更加深刻。讓學生明確:因數和倍數是相互的,是有所指的,是兩個自然數之間的關系,不能單純的說6是因數或12是倍數,應說6是12的因數,12是6的倍數。
教材把倍數和因數的意義以及找一個數的倍數和因數合在一個課時教學的,課的容量大、內容多。怎樣通過有效的課堂,真正使孩子理解倍數和因數的意義,并且能夠有序、完整地找一個數的`因數和倍數,就成了本節(jié)課的教學重點。其中,有序完整的找一個數的因數,既是重點更是難點。教學中我結合得到的三道乘法算式,教師半扶半放的引導學生找出12的所有因數。有了找12的因數的例子為依托,正好可以為找一個數的因數提供了思維的平臺,找一個數的倍數比較容易,放在后面可以少投入些時間。
”從學生的角度看問題是教學取得實效的關鍵“。本環(huán)節(jié)對學生可能出現的情況做了充分的預設,并通過兩次針對性的比較,使學生學會靈活地、有序地思考,及時引導學生用自己的語言總結找一個數因數的方法。應該說,找出24的幾個因數并不難,難就難在找出24的所有因數。教學中,不是急切認定結果,也不是把方法簡單地告訴學生,而是讓學生獨立探究,在作業(yè)紙上獨立寫出24的所有因數,教師則及時巡視并請學生將各種情況反饋。有用乘法找的,有用除法找的,有有序找的,也有無序找而有遺漏的。
教師引導學生對有序和無序找的作了比較,學生在比較、交流中感悟到有序思考的必要性和科學性。在學和議的環(huán)節(jié),學生交流的過程應該是相互補充、相互接納的過程,是對學習內容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺正方形的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。這部分教學,我給學生足夠的時間,讓他們認真地思考、充分地交流、相互評價。學生在這樣的過程中親歷了方法探究的過程,自主構建了知識體系。
接著通過練習及時鞏固找因數的方法。最后通過觀察比較三個數的所有因數,發(fā)現一個數的因數的特征時,讓學生先在小組里說一說,再用自己的語言總結,而找出因數的特征。從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。

