華東師范八年級數(shù)學(xué)教案(專業(yè)16篇)

字號:

    一個好的教案可以提供學(xué)習(xí)的有效路徑和方法,使學(xué)生更好地理解和掌握知識。編寫教案時,應(yīng)注意教學(xué)過程的連貫性和層次性,使學(xué)生在不同的學(xué)習(xí)階段能夠有序地進行。希望這些教案范文可以給你帶來一些幫助,祝你編寫出優(yōu)秀的教案!
    華東師范八年級數(shù)學(xué)教案篇一
    1.了解方差的定義和計算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
    1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    2.難點:理解方差公式。
    3.難點的突破方法:
    方差公式:s=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。
    (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。
    (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。
    (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。
    1.教材p125的討論問題的意圖:
    (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
    (2).為引入方差概念和方差計算公式作鋪墊。
    (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。
    (4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的'局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。
    2.教材p154例1的設(shè)計意圖:
    (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。
    (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。
    除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。
    教材xxx例x在分析過程中應(yīng)抓住以下幾點:
    1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。
    2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。
    3.方差怎樣去體現(xiàn)波動大???
    這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。
    1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)。
    甲:9、10、11、12、7、13、10、8、12、8;。
    乙:8、13、12、11、10、12、7、7、9、11;。
    問:(1)哪種農(nóng)作物的苗長的比較高?
    (2)哪種農(nóng)作物的苗長得比較整齊?
    測試次數(shù)12345。
    段巍1314131213。
    金志強1013161412。
    參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊。
    的成績比xx的成績要穩(wěn)定。
    略。
    華東師范八年級數(shù)學(xué)教案篇二
    一、教材分析:
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
    (一)知識目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;
    (二)能力目標(biāo):
    1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    二、學(xué)生分析:
    該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
    三、教法分析:
    針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。
    通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
    四、學(xué)法分析:
    本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。
    五、教學(xué)程序:
    第一環(huán)節(jié):相關(guān)知識回顧。
    以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)。
    定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進一步鞏固有關(guān)正方形的知識。
    華東師范八年級數(shù)學(xué)教案篇三
    教學(xué)目標(biāo):
    〔知識與技能〕。
    1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.
    2.在探索的過程中,培養(yǎng)學(xué)生分析、歸納的能力.
    〔過程與方法〕。
    2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。
    〔情感、態(tài)度與價值觀〕。
    1、體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強克服困難的勇氣和信心;2、會應(yīng)用數(shù)學(xué)知識解決一些簡單的實際問題,增強應(yīng)用意識。
    教學(xué)重點:
    軸對稱圖形對稱軸的作法.
    教學(xué)難點:
    探索軸對稱圖形對稱軸的作法.
    教具準(zhǔn)備:圓規(guī)、三角尺。
    教學(xué)過程。
    一.提出問題,引入新課。
    2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點所連線段的垂直平分線.
    3.找到一對對應(yīng)點,作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.
    4.問題:如何作出線段的垂直平分線?
    二.導(dǎo)入新課。
    1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點距離相等的點在這條線段的垂直平分線上,又由兩點確定一條直線這個公理,那么必須找到兩個到線段兩端點距離相等的點,這樣才能確定已知線段的垂直平分線.
    [例]如圖(1),點a和點b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?
    已知:線段ab[如圖(1)].
    求作:線段ab的垂直平分線.
    作法:如圖(2)。
    (1).分別以點a、b為圓心,以大于。
    (2).作直線cd.
    直線cd就是線段ab的垂直平分線.
    2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.
    作法:
    1.找出五角星的一對對應(yīng)點a和a′,
    連結(jié)aa′.
    2.作出線段aa′的垂直平分線l.
    則l就是這個五角星的一條對稱軸.
    用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.
    三.隨堂練習(xí)。
    (一)課本35練習(xí)1、2、3。
    如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.
    1ab的長為半徑作弧,兩弧相交于c和d兩點;2。
    答案:與a成軸對稱的是圖形d(或b).
    四.課時小結(jié)。
    方法:找出軸對稱圖形的任意一對對應(yīng)點,連結(jié)這對對應(yīng)點,?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.
    五.課后作業(yè)。
    華東師范八年級數(shù)學(xué)教案篇四
    (一)、知識與技能:
    (1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
    (2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
    (二)、過程與方法:
    (1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。
    (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。
    (三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。
    二、教學(xué)重點和難點。
    重點:因式分解的概念及提公因式法。
    難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
    三、教學(xué)過程。
    教學(xué)環(huán)節(jié):
    活動1:復(fù)習(xí)引入。
    看誰算得快:用簡便方法計算:
    (1)7/9×13-7/9×6+7/9×2=;
    (2)-2.67×132+25×2.67+7×2.67=;
    (3)992–1=。
    設(shè)計意圖:
    注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
    活動2:導(dǎo)入課題。
    p165的探究(略);
    2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
    設(shè)計意圖:
    引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
    活動3:探究新知。
    看誰算得準(zhǔn):
    計算下列式子:
    (1)3x(x-1)=;
    (2)(a+b+c)=;
    (3)(+4)(-4)=;
    (4)(-3)2=;
    (5)a(a+1)(a-1)=;
    根據(jù)上面的算式填空:
    (1)a+b+c=;
    (2)3x2-3x=;
    (3)2-16=;
    (4)a3-a=;
    (5)2-6+9=。
    在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    活動4:歸納、得出新知。
    比較以下兩種運算的聯(lián)系與區(qū)別:
    a(a+1)(a-1)=a3-a。
    a3-a=a(a+1)(a-1)。
    在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
    華東師范八年級數(shù)學(xué)教案篇五
    1.理解分式的基本性質(zhì).
    2.會用分式的基本性質(zhì)將分式變形.
    二、重點、難點。
    1.重點:理解分式的基本性質(zhì).
    2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認(rèn)知難點與突破方法。
    教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習(xí)題的意圖分析。
    1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
    教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。
    3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
    四、課堂引入。
    1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
    2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
    (補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    [分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習(xí)。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
    七、課后練習(xí)。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    華東師范八年級數(shù)學(xué)教案篇六
    正比例函數(shù)的概念。
    2、內(nèi)容解析。
    一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。
    對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
    本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進行辨析,對實際事例進行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
    基于以上分析,確定本節(jié)課的教學(xué)重點:正比例函數(shù)的概念。
    1、目標(biāo)。
    (1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
    (2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。
    2、目標(biāo)解析。
    達成目標(biāo)(1)的標(biāo)志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
    達成目標(biāo)(2)的標(biāo)志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。
    正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
    因此本節(jié)課的教學(xué)難點是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程。
    華東師范八年級數(shù)學(xué)教案篇七
    多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
    二、自主學(xué)習(xí),指向目標(biāo)。
    學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分。
    三、合作探究,達成目標(biāo)。
    多邊形的定義及有關(guān)概念。
    活動一:閱讀教材p19。
    小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
    反思小結(jié):多邊形的定義及相關(guān)概念。
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    多邊形的對角線。
    活動二:(1)十邊形的對角線有35條。
    (2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。
    反思小結(jié):當(dāng)n為已知時,可以直接代入求得對角線的條數(shù),當(dāng)對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
    小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    正多邊形的有關(guān)概念。
    活動二:閱讀教材p20。
    小組討論:判斷一個多邊形是否是正多邊形的條件?
    反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
    針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。
    四、總結(jié)梳理,內(nèi)化目標(biāo)。
    本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:
    1、多邊形、多邊形的外角,多邊形的對角線。
    2、凸凹多邊形的概念。
    五、達標(biāo)檢測,反思目標(biāo)。
    1、下列敘述正確的是(d)。
    a、每條邊都相等的多邊形是正多邊形。
    c、每個角都相等的多邊形叫正多邊形。
    d、每條邊、每個角都相等的多邊形叫正多邊形。
    2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。
    a、三角形b。正方形c。四邊形d。梯形。
    3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。
    4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。
    華東師范八年級數(shù)學(xué)教案篇八
    教學(xué)。
    目標(biāo)(含重點、難點)及。
    設(shè)置依據(jù)教學(xué)目標(biāo)。
    1、了解多面體、直棱柱的有關(guān)概念.2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
    教學(xué)重點與難點。
    教學(xué)過程。
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設(shè)情景,引入新課。
    析:學(xué)生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
    學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
    學(xué)生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側(cè)棱互相平行且相等。
    4.學(xué)以至用。
    出示例題。(先請學(xué)生單獨考慮,再作講解)。
    析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(xí)(學(xué)生練習(xí))。
    完成“課內(nèi)練習(xí)”
    三、小結(jié)回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
    合作交流后得到:重點直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設(shè)計。
    作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
    華東師范八年級數(shù)學(xué)教案篇九
    1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
    2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
    3、會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理。
    1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
    2、通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的能力。
    通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
    通過學(xué)習(xí),體會幾何證明的方法美。
    構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
    1、教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用。
    2、教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理。
    (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理)。
    華東師范八年級數(shù)學(xué)教案篇十
    1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
    2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
    平行四邊形的判定方法及應(yīng)用。
    閱讀教材p44至p45。
    利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?
    (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
    (3)你能說出你的做法及其道理嗎?
    (5)你還能找出其他方法嗎?
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
    平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)。
    平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
    華東師范八年級數(shù)學(xué)教案篇十一
    1、了解方差的定義和計算公式。
    2、理解方差概念產(chǎn)生和形成過程。
    3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
    重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
    難點:理解方差公式。
    (一)知識詳解:
    方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
    給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
    (二)自主檢測小練習(xí):
    1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
    2、甲、乙兩組數(shù)據(jù)如下:
    甲組:1091181213107;
    乙組:7891011121112。
    分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
    引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
    甲:9.10.10.13.7.13.10.8.11.8;
    乙:8.13.12.11.10.12.7.7.10.10;
    問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
    (2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))。
    歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
    (一)例題講解:
    金志強1013161412。
    提示:先求平均數(shù),然后使用公式計算方差。
    (二)小試身手。
    1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
    甲:7.8.6.8.6.5.9.10.7.4。
    乙:9.5.7.8.7.6.8.6.7.7。
    經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
    1、求下列數(shù)據(jù)的眾數(shù):
    (1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
    方差公式:
    提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
    每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
    1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)。
    如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
    必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。
    寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
    華東師范八年級數(shù)學(xué)教案篇十二
    1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
    2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
    3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進取心,體會數(shù)學(xué)的應(yīng)用價值.
    將實際問題中的等量 關(guān)系用分式方程表示
    找實際問題中的等量關(guān)系
    有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
    這 一問題中有哪些等量關(guān)系?
    如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
    根據(jù)題意,可得方程_ _____________________。
    學(xué)生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
    本節(jié)課你學(xué)到了哪些知識?有什么感想?
    華東師范八年級數(shù)學(xué)教案篇十三
    認(rèn)知基礎(chǔ):學(xué)生在七年級下冊第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認(rèn)識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對學(xué)生有較高的要求,學(xué)生在理解和運用時會有一定的難度。
    活動經(jīng)驗基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。
    知識與技能目標(biāo):
    (1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。
    (2)根據(jù)兩個變量之間的關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。
    (3)會對一個具體實例進行概括抽象成為函數(shù)問題。
    過程與方法目標(biāo):
    (1)通過函數(shù)概念初步形成利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。
    (2)經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
    情感態(tài)度與價值觀目標(biāo):
    (1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    (2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    華東師范八年級數(shù)學(xué)教案篇十四
    基礎(chǔ)知識。
    記住圓明園被燒毀,主權(quán)進一步喪失,領(lǐng)土被大量割占的恥辱。
    能力訓(xùn)練。
    過程方法綜合理解。
    識圖填圖新學(xué)案91頁第三題:沙俄割占我國領(lǐng)土及其條約名稱。
    情感、態(tài)度。
    思想意識要繼承并發(fā)揚中華民族堅決反抗外來侵略的光榮傳統(tǒng)。
    教學(xué)重點第二次鴉片戰(zhàn)爭的發(fā)生以及列強侵華的罪行。
    教學(xué)難點第二次鴉片戰(zhàn)爭與太平天國運動的關(guān)系。
    教學(xué)過程。
    導(dǎo)入新課。
    組織學(xué)生回顧新學(xué)案第2頁的“知識網(wǎng)絡(luò)”,討論回答問題:
    1.第一次鴉片戰(zhàn)爭《南京條約》的簽定,給中國帶來什么后果?(割讓香港島使中國領(lǐng)土主權(quán)不完整;巨額賠款,增加了人民負(fù)擔(dān);開放五口通商和協(xié)定關(guān)稅,有利于資本主義國家對中國的商品輸出。結(jié)果,中國開始淪為半殖民地半封建社會。)。
    2.列強是否滿足已經(jīng)得到的利益?(不滿足)。
    小結(jié)、過渡:《南京條約》使侵略者攫取了許多利益、中國遭受到了沉重的災(zāi)難,列強并沒有滿足貪婪的欲望,想要通過修訂條約來擴大權(quán)益。遭到清政府拒絕后,他們便找借口發(fā)動戰(zhàn)爭,想要迫使清政府就范。由于這場戰(zhàn)爭是上一次戰(zhàn)爭的繼續(xù),所以它被叫做第二次鴉片戰(zhàn)爭。
    組織學(xué)生學(xué)習(xí)和探究新課。
    一、火燒圓明園。
    教師介紹圓明園建筑的宏偉和精美,組織學(xué)生看、說、議。
    學(xué)生閱讀6——7頁的本目課文、插圖、資料和第10頁“自由閱讀卡”內(nèi)容,根據(jù)教師的提問在書上劃出或標(biāo)注答案。
    1、看過電影《火燒圓明園》的同學(xué)請舉手。誰能結(jié)合課文內(nèi)容揭發(fā)列強的罪行?(掠奪珍寶,焚燒罪證)。
    2、哪那兩位同學(xué)愿意扮演當(dāng)年的英國兵和法國兵?(背景是火燒圓明園后,他們在倫敦重逢的某一天)請他們通過對話,表示一種懺悔的心情。
    二、俄國侵占我國大片領(lǐng)土。
    學(xué)生閱讀7——8頁的本目課文和表格、地圖,隨堂練習(xí):
    1、學(xué)生先根據(jù)第8頁表格,在4人小組內(nèi)“動腦筋”:沙俄通過哪些不等條約割占我國北方哪些領(lǐng)土?(說出大致位置和面積)。
    2、學(xué)生完成新學(xué)案第7頁[自我測評]第二題“知識聯(lián)線”:([數(shù)字]表示相應(yīng)的地理位置)。
    (1)——[4];(2)——[1];(3)——[2];(4)——[3]。
    3、學(xué)生完成課本第9頁“練一練”。(答案應(yīng)選c)。
    三、太平軍抗擊洋槍隊。
    學(xué)生閱讀第9頁本目課文和“插圖”以及“說明文字”,思考回答:
    太平軍的斗爭,說明中國人民怎樣對待國內(nèi)的腐敗政府和外國的侵略勢力?(“落后就要挨打”是中國在鴉片戰(zhàn)爭中失敗的根本原因和深刻的歷史教訓(xùn)。所以,要想改變落后挨打的命運,就必須-國內(nèi)的腐敗政府,堅決抗擊外來的野蠻侵略。)。
    如時間許可,鞏固小結(jié)。
    1、指導(dǎo)學(xué)生根據(jù)[知識網(wǎng)絡(luò)]梳理本課線索。
    2、布置作業(yè)。
    3、提醒學(xué)生預(yù)習(xí)第3課《收復(fù)x疆》。
    華東師范八年級數(shù)學(xué)教案篇十五
    1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
    2.了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的算術(shù)平方根。
    算術(shù)平方根的概念。
    根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
    這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
    1、提出問題:(書p68頁的問題)
    你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
    這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.
    一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
    也就是,在等式=a (x0)中,規(guī)定x = .
    2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
    3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
    建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。
    4、例1求下列各數(shù)的算術(shù)平方根:
    (1)100;(2)1;(3) ;(4)0.0001
    p69練習(xí)1、2
    怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
    方法1:課本中的方法,略;
    方法2:
    可還有其他方法,鼓勵學(xué)生探究。
    問題:這個大正方形的邊長應(yīng)該是多少呢?
    大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
    建議學(xué)生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
    1、這節(jié)課學(xué)習(xí)了什么呢?
    2、算術(shù)平方根的具體意義是怎么樣的?
    3、怎樣求一個正數(shù)的算術(shù)平方根
    p75習(xí)題13.1活動第1、2、3題
    華東師范八年級數(shù)學(xué)教案篇十六
    調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
    例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
    從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
    例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結(jié)】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
    (3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
    解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當(dāng)這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結(jié):
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
    課堂檢測。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
    基礎(chǔ)知識應(yīng)用題。
    2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計算這10個班次乘車人數(shù)的平均數(shù);
    (2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。